# THz based Imaging for Inspection and spectroscopic Analysis



IMEKO XIX World Congress, Lisbon 7th Sept. 2009



# **Cosmological radiation**



# **Characteristics of THz-radiation**



# **Characteristics of THz-radiation**

### **Overview**

### Strong absorption of polar fluids (water)

- Little penetration depth in hydrous substrates
- Low range in humid air
- Possibility of quantification of specific humidity

### Metals are non-transparent for THz-radiation

- Possibility to detect metals
- Dielectrics are transparent to THz-radiation (paper, plastics, textiles, etc.)
  - Possibility to radiograph for instance packages

# THz-Technologies in focus of the media





A mysterious radiation fascinates physicians: Ubiquitous, but nearly non-detectable radiate terahertz-waves in the frequency domain between infrared and microwaves. Now they should improve precaution of cancer and strengthen security at airports. (Spiegel 11/2002)

Passengers virtually stripped naked by 3-D airport scanner (CBC-News 06/2008)





# **Publications and patents for THz**





# The spectrum of electromagnetic radiation



### **THz-Systems: variable sources between 50GHz – 10 THz**





# **Technical generation of THz-radiation**



**Transient Photoconductivity:** 

 Ultra fast (<100 fs) IR/vis pulse of Ti:Sa or fibre-Laser (Er, Nd)

```
    Generation of free charge carriers in semiconductor
(e.g. LT grown GaAs: τ<sub>e</sub> ~ 0,1 ps, τ<sub>h</sub> ~ 0,5 ps,
μ ~ 10<sup>3</sup> cm<sup>2</sup>/Vs; E ~ 10KV/cm) courtesv of:
```

courtesy of: Prof. Wagner, FhG-IPMT

# **Technical generation of THz-radiation**



courtesy of: Prof. Wagner, FhG-IPMT

# **Generation of THz-Pulses**



**Basic principles : Generation and detection of THz-radiation** 

# THz-pulse in time and frequency domain



# **Detection of THz-pulses**



# **Detection of THz-pulses**



**Basic principles : Generation and detection of THz-radiation** 

# **Transmission range of THz-pulses**



# **Generation of continuous THz-radiation (cw)**



**Basic principles : Generation and detection of THz-radiation** 

# **Generation of continuous THz-radiation (cw)**



**Basic principles : Generation and detection of THz-radiation** 

# **Technical realization of THz-antennas**





**Basic principles : Interaction between THz-waves and matter** 

# **Dynamic procedures in THz-range**



### transitions between discrete rotation states of polar molecules



**Basic principles : Interaction between THz-waves and matter** 

# **Dynamic procedures in THz-range**





# **Time-domain-spectroscopy**



# **THz-spectroscopy**



# **THz-antenna arrays**



# **THz-tomography**





# **Markets for THz-technologies**

### Markets for THz-technologies



# **Metrological applications**



### Industrial and spectroscopic inspection with THz-radiation



# **THz-Analysis in Safety Applications**



# **Quality control in aerospace**

### Example: fuel tank



# **Control of completeness and fill level**





# **Control of inhomogenity in materials**





# State of the technology: Multi-Sensor-CMM

### Measuring task

Flexible measurement of geometric characteristics on 3 dimensional surfaces

Possible realizations

Multi-Sensor-coordinate measuring machine

### Disadvantages

- No information about properties of material
- Impossible to measure different layers





Multi-Sensor-CMD of Werth

# **THz-radiation as extension for the CMT**





Make the invisible visible - THz imaging on the way to industrial application

# Summary

- The key innovation for generation and detection of THz-waves was the optoelectronic switch and the resulting optoelectronics
- THz-waves radiograph dielectrics, characterize molecules and are suitable for tomography
- Fields of application are in particular safety engineering, quality control and medical technology
- But: For the industrial application THz-systems have to be faster, more compact and low priced

Prof. Dr.-Ing. Pfeifer

# Thank you for your attention

Acknowledgement to:

Prof. Dr.-Ing. Elmar Wagner Dr.-Ing. Stephan Bichmann