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Abstract — In this paper, mathematical tools, like Monte propagation, Monte Carlo simulation). These methais
Carlo simulations and direct propagation methodsebaon be presented and their results compared and destuss
the GUM, are experienced to calculate the uncdytaha

datum reference in orthopedic surgery. In the dggtroach, 2. STATE OF THE ART IN UNCERTAINTY

the Jacobian matrices of the measurement process ar CALCULATION

determined either by analytical calculus or through

numerical computations. The methods are appliedh& Monte Carlo (MC) simulation is a common tool in

determination of reference frames in total knebraglasty. uncertainty evaluation of complex measurement ETEe
The different approaches are employed to calcuthte It is used because of the lack or the difficulty express
uncertainties and the results are compared. analytical solutions. The convergence rate of MoD&lo
methods iso[i/y/N), where N is the number of simulated
Keywords Uncertainty, Mathematical tools, Computer gxperiments. Instead of using pseudo-random gesrsrat
Assisted Orthopedic Surgery (CAOS). can be accelerated by employing deterministic wnifyp
distributed sequences known as presenting low-glisarcy.
Methods based on such sequences are named Quatt Mon
1. INTRODUCTION Carlo. Asymptotically, Quasi Monte Carlo can pravid
rate of convergence of abdD{1/N).
Measurement in health applications greatly increéase
these last ten years. In the field of arthroplastgyeral Uncertainty can also be determined through comijoutat
questions are however asked by surgeons on thisttean  of sensitivity coefficients. Such factors may beivkd form
uncertainty of the prosthesis after implantationocal Taylor expansion approximations of the measent
Nevertheless, the quality of implantation of thegthesis process functions. A propagation method, based on a
largely impacts its service life (currently 10 yslarAt this  analytical calculus of the first order partial detives is
time, Computer Aided Orthopaedic Surgery (CAOS)sdoethus detailed in the Guide to the Expression of ditainty
not permit the surgeon to know the relation betwé®® jn Measurement GUM [1]. It has already been applied
implantation uncertainty and the precision at whighical  successfully to classical dimensional metrology [3]. In
landmarks are probed on the patient. Yet, unceytainour paper, this technique will be extended to campl

propagation calculation methods are already infgnseed  measurement processes, by using a numerical cotigouta
in masse, dynamic, dimensional, chemistry ... measuref the partial derivatives.
ments.

The sensitivity coefficients may also be defined by

Total knee arthroplasty requires the CAOS systefmidg  Sobol's approach. Sobol's methods [4], [5], [63 &ariance
reference frames attached to the tibia and the feifhese  pased global sensitivity analysis techniques basgdn

coordinate systems are derived from the acquisitioa set  “Total Sensitivity Indices” that account for intetin
of three center points of balls fixed to each bddiece the effects of the variables. The Total Sensitivity ities of an
patient may move during the implementation procélsis, jnput is defined as the sum of all the sensitiviitdices
has to be done, at real time. involving that input. This method includes both maifect
of each input as well as the interactions with diber
In this paper, uncertainty calculation of such mefiee  variables [4]. Sobol's method can cope with bothlimear
frames will be treated by several methods (Anafytic and non-monotonic models, and provide a truly Gjtetie
ranking of inputs and not just a relative qualitatmeasure
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[5]. Effort has been done to reduce the computation gzaxgzﬁ (3)

complexity associated with the calculation of S&bol

indices. However, even with its most recent develepts, , ,

Sobol's method remains computer time consuming. 3.1. Analytical propagation

The classical method of the GUM is used to propagae
In this paper, three methods will thus be used tdincertainties of the measured poiRis P, Ps, thus leading

calculate the uncertainty of reference frames coostd to following equation:

frlom a Iset of It)t]treel measuredt_points.h Tbh%se methozetst_ COV(€,€,€,01)= J.Cov(P).J! 4)

classical analytical propagation, hybrid propagatio ~

(numerical calculation of sensitivity coefficien)d Monte (12x12) = (12x9)(0x0)(9x12)

Carlo simulation method.
The numbers under equation (4) define the dimessafn

2> MATHEMATICAL TOOLSTO CALCULATE THE the matrices. Jacobian matdxs defined by:

REFERENCE FRAME UNCERTAINTY Jel,a

In numerous measurement procedures, it is necessary J= J% ®)
derive an orthonormal coordinate system from a&étree &a
measured points (Fig. 1.). This paragraph detdies t J%

calculation of the components of its unit vectonsl aheir
uncertainty. The uncertainties can be estimateddweral
methods. In this paragraph, analytical propagatéom
Monte Carlo simulation are introduced.

Wherea, represents one of the nine point coordinates by
which the functions are derivated.

The components of the previous global Jacobian are

m formulated in equations (6) to (9):
0 B) 2 [I 0BB)- (BD B) 0., (6)
€m  ©m -~ 3 -
P, Joa =(CC) 2[| 0 .C)-(CDC)EI]EM (7)
Y R I

P Jo =(DD) 2[| EQD.D)-(DD D) iy 8)

e, QP=0, 100000000
Jos =|0 10000000 ©)

u &, 001000000

o Where:l is the unit matrix.
Fig. 1. Reference framex, e, e:,0,)

The expressions of the intermediate Jacobian nesstrix
3.1. Analytical reference frames derived from three  are derived in equations (10) to (12):
measured points

An example of reference frame constructed fromta&e 0 (2-2)  (%-Y.) 0
three pointdy, P,, Ps, digitalized by a coordinate measuring J, = (z,-z)) 0o (X-X) -(z-z)

machine (CMM) is represented in Fig. 1. ,-Y,) (X,-X,) 0 (v,-v,) (10)
This coordinate system is composed of orthogonél un 2-2) -(%-Y) 0 (2-z) (%)
vectors e;, €; and e;;. Equations (1) to (3) detail the 0 (X3-xl) (Zz'zl) 0 ‘(Xz‘xl)
calculation of these vectors. -(X-%) 0 -(%-Y) (X-Xx) 0
PP xPP L
e=PP*PR _(GEfep (1) 10 0100000 ”
P, xPP, Je, 5|0 -1 0 010000
o 0 0-1001000
With B=PP P
J
55 1 1 19
e=hr —(cc):c @ Io =] S INCE)
1P Ja I3
With C = E The components of this last matrix are easily dated:
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3, =(Z,-2,)1(z,-2,) - (%, - ¥)(Y, - Y,) assumed to be scattered in a spherical localisatiore of
3., = (X, = X,)lY, =Y,) = (X, - X, ) v, -Y,) diameter W. For that reason, functibis calculated for the

(X=X, )ify,-v,)  (13) four values B, +W/4 and R, +W/2 of parameterP;,
keeping all other coordinates fixed to their meatug. The

partial derivative of the functiof can finally be evaluated
through following equation:

38 (Zi _Zz)[ﬁYz _Y1)

o= 0P 4%, X, of _ %) B lbw)* Toow) Towy) g

6.W

J
J

The three point®,, P,, P;, are assumed to be measured oF;
independently.The global covariance matrix of the whole
nine acquired coordinates is thus composed of three Where index references the point aficbne of its three
independent sub-matrices: coordinates.

Cov(P,) 0 0 This procedure is applied to all nine coordinaiéshe
_ 14 three measured point8;. The 12x9 components of the
G 0 Cov(F;) 0 4 Jacobian matrixJ are thus obtained. The spherical
0 0 Cov(R;) covariance matrix of the measured points is finally
propagated to the reference frame components using
For all three point®;, the measurements are assumed t@quation (4).
be uniformly scattered in a spherical localisatmone of

diameteW (Fig. 2.). 3.3. Monte Carlo simulation
P,
W=0,1 mm RndQf  Random o
w generator 2

L. P,
-

L I+ ¢ — Meanvalue
Datum referencg— e,— and
Calculation [— &~ covariance matrix
Fig. 2. Localisation zone of measured points — O, calculation
The accuracy of the CMM is thus considered to ke th Fig. 3. MC simulation method
same in any direction and, consequently, each basic
covariance matrix takes a spherical form. The dsiamh The procedure used to calculate the mean valuetrend
deviation of the nine independent coordinates is: covariance matrix of the reference datum is ShOV\IFNg?J
First, the three coordinates of each measured pisint
W generated randomly using the specific procedurehwhiill
Umrezrﬁ (15)  pe presented below. Second, the components of iite u

vector characterizing the reference datum are dstifrom
equations (1) to (3). After numerous simulatioh®irt mean

The covariant matrix of the datum reference islfina yajyes and covariances are finally computed through
deduced from all these equations. classical statistical analysis.

3.2. Hybrid propagation

In complex processes it is very hard to calculdte t
Jacobian matrix of the measurement function agst lieen
done in previous method. We propose therefore now t
calculate the components of the Jacobian matrices
numerically. Reference framey(e,, e; O,) is characterized
by the nine cosines of its unit vectors and theeehr
coordinates of its origin. Let us narh@ne of these twelve
components. Such function depends on the nine mean

coordinateqP11, P12, P13), (P21, P22, P23), (P31, Pss, Pag), of Fig. 4. Random parameters of spherical coordisytgem
the measured point§P;, P,, P3) and their random
perturbations. A given component of the Jacobiatrimis Monte Carlo simulation method has been applied in

just the partial derivativedf /aPij of function f. It can be major scientific problems. It is very easy to usg kequires
all input variables to be independent. A classiCaltesian

evaluated numerically through a third degree pay representation of the deviations to the mean coatds

Taylor expansionAs already pointed out, each pomtis
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cannot thus be used to simulate a uniform randorwhose variations are the main source of uncertaiftthe

repartition of measured points in a spherical lisation final adjustment of the prosthesis.

zone. A spherical coordinate system parameterizatio

(0,,9,,p,) of the deviations, as presented in Fig. 4, isthuin next paragraph, the uncertainty of a given messpoint

useful to solve the problem. M; will be determined using the three methods preseirt
previous section. As shown in Fig. 5.These scheniédbe
applied to the measurement of the lateral femoral

An accurate simulation of measurement data needdPicondyle. The mean coordinates of the relatedtp®i,
however accounting for the non uniform distributiohthe ~ expressed in the coordinate system of the measuring
independent variablesd(,0,,p,). This leads to following machine, are given in Table 1.

random generation equations: Table 1. Coordinates of points Pi

P, :V_V 3/ Rnd() P1 P2 P3
L2 1007,285| 876,633 941,468
i = - 17 1746,624 | 1791,046 1744,374
4 AfCCOS(l ZIRndO) 4D 663,364 604,570 616,577
6, = 2N.Rnd()

The calibrated lengths of the ball tip pointer wed?®;M;
In these equationsRnd() is the random generation of a are specified in Table 2.
uniformly distributed real variable in the interv§d,1].
Mersenne-Twister pseudo-random generation algoriams
been used to avoid sequential correlations betwbese

Table 2. Ball tip pointer calibrated lengths.

variables. a 0
b -100
4, CASE STUDY c 0

Figure 5 shows an example of anatomic landmark The accuracy of the optical measuring machinexisdfj
measurement carried out during total knee arthetplaAn  as defined by the manufacturer 0.1 mm.
external optical measuring machine acquires theetpoints
P;, P, and P; of a ball tip pointer. These points permit
calculating the coordinates, in the measuremerdgreate
datum, of the landmarl/; pointed by the surgeon. The The three methods are employed to calculate, the
knowledge of calibrated vectd?;M; permits obtaining its covariance matrix of the reference frame defined tivy
coordinates in the global reference frame: three points; of the ball tip pointer. The covariance matrix
of the coordinates of the related measured pidirns then
derived from this data. This paragraph details dh&ined
results.

5. RESULTS

O M =0 P +PM, =0 P +ae +be, +ce, (18)

Where:a,b,c, are the calibrated components of ve@&gv;.

5.1. Analytical propagation

The coordinates of Table 1 are entered in equatiéns
to (14) to compute the covariance matrix of theerefice
frame €, &, e O,). Figure 6 presents the results of these
calculations.

5.7E-08
-6,0E-10
3,8E-08
-3,2E-08] 1,
-3,2E-08
4,6E-08] -1,
55E-08] -
-1,9E-08) -
2,5E-08
2,5E-06
2,5E-06
-3,6E-06)]

-6,0E-10 38E-(8 -3,2E-08 -3,2E;
1 65E-07 11E-08 11E:
| 48E-07 -14E-D8 -14F
-1,4E-08 18E-08 19E
-14E-08 1,9E-08 6,8E
2,1E-0B -2.5E-D8 8,6E
-2,6E-07 -3,6E-D8 -11F,
-4,2E-Q7 4,6E-09 3.2F
1 59E-07 -55E-)9 -p.9H
5,0E-06 -1,3E-D6 -.4F
51E-06 -1,4E-D6 -p,1F
-7,3E-06 1,9E-06 -p.4F

08 4,E/08 5,8F-0,05-08
08 -1,66-08 -4,3E-H,8E-07
08 2,1E}08 -2,8E-0,26-07
08 -2,50-08 -3)BE4,6E-09
08 8,66109 -4,8F2E-08
09 6,3E408 4,8568E-09
08 486108 3)9E-25E07
08 626409 2,5-B8E0]
08 -1,09-08 -3)7E-5,4E-01
06 19E/06 -3,8E-B.4E-04
06 -6,46-07 5,850,450
07 -4,76-06 EN4] 4,606

25608 25606 2,5E-06 -3,6H
83E-07_47E-06 48E-06 6,9
59E0] 50E-06 51E06 -7,3H
-5,5E-09 -1,3E-06 -14E-06 1,9
-2,9E-08 -1,4E-06 -5,1E-D6 -6,4H)
-1,0E-08 1,9E-06 -6,4E-D7 -4,7E
-3,7E-0F -3,2E-06 55E-)7 -7.4H
-5,4E-0 -5,8E-06 -4,8E-D6 4,2F
1,1E-0] 8,2E06 6,7E-p6 -5,7H
8,2E-09 8,3E-04 0,0E+D0 0,0E:
6,7E-09 0,0E+00 8,3E-p4 0,0E
-5,7E-06 0,0E+00 2,0E+00 8,36

O

Fig. 5. Point measurement technique in total laréeroplasty.

In total knee arthroplasty, this procedure is agapht lot
of times to acquire all the anatomic landmarks used
characterize the mechanical axes of the tibia heddemur.
This permits finally defining the cutting planestbg bones

€ €3

Fig. 6. Covariance matrix of the reference frame.
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The variances of unit vectoeg ande;, and originO, are
of the same order of magnitude, whereas those, @fre
much smaller. As established by equation (2) thiinked
to the direct calculus of the last vector from do®rdinates
of pointsP; andP..

In the analytical method, the uncertainty of theameed

point M; is obtained by propagation of the reference frame

covariance matrix:

Ji (19)

With:
0
0
1

The mean coordinates and the covariance matrixef t
point probed by the ball tip pointer are thus dedivThe
results are presented in Table 3.

Table 3. Results of the analytical propagationhoet

Covariance matrix M ean value
2,54E-03| 2,33E-03 1,96E-03 1094,386
2,33E-03| 3,79E-03 2,59E-03 1717,010
1,96E-03| 2,59E-03 3,05E-03 702,560

Such calculation permits optimizing the design lué ball
tip pointer. In fact, to avoid excess uncertaintggagation
to the probed poinM;, the largest length of the calibrated
vector P;M; must be set in direction of unit vecter. The
best configuration is thus to put the end pointhaf ball tip
pointer in the prolongation of line;P,.

The standard deviations of the measured coordirtates
finally be estimated. The enlarged uncertainties tloé
measured point, for a confidence ratioke®, are presented
in Table 6.

5.2. Hybrid propagation

The evaluation of the covariance matrix of the b

point M; does not require computing the Jacobian matrix o

the reference frameef, &, e O,). In fact, numerical
calculation of partial derivatives, as explainedparagraph
3.2, can be extended directly to the three cootdtaf the
probed pointM;. This allows straight evaluation of the
Jacobian matrix J, between the nine parameters
characterizing the set of measured poirey @nd these
coordinates. The classical propagation formulahefGUM

is finally used to evaluate the covariances of pnebed
point M;:

COV( OmM;)

(3x13)

=3,.CoVp p p,)-J2 (20)

(3x9) . (9x9) . (9x3)

The numbers under equation (20) define the dimessio
of the matrices. The results of this hybrid propega
method are presented in Table 4.

Table 4. Results of the hybrid propagation method.

Covariance matrix M ean value
1,28E-03| 4,78E-04 -6,32E-(4 1094,386
4,78E-04| 2,52E-03 2,15E-04 1717,010
-6,32E-04 2,15E-04 2,40E-03 702,560

The enlarged uncertainties of the measured paintaf
confidence ratio ok=2, are presented in Table 6.

5.3. Monte Carlo simulation

The Monte Carlo Simulation method presented
paragraph 3.3 has been applied to the acquisitiocegure
of point M;, in order to evaluate the uncertainties of its
coordinates. 30000 sets of poin®)(were therefore built
randomly. The mean values and the covariance mattixe
simulated coordinates were finally computed through
classical statistical analysis:

in

(21)
1

N J— —
53 =R -Y)
Where:X; andY; are simulated coordinates.

The results obtained by the Monte Carlo simulation
method are presented in Table 5.

Table 5. Results of the Monte Carlo Simulationhmoelt

Covariance matrix M ean value
1,47E-03| 5,95E-04 -5,19E-O4 1094,385
595E-04| 3,01E-03 1,75E-04 1717,009
-5,19E-04| 1,75E-04 1,58E-08 702,617

The enlarged uncertaintyk£2) of the coordinates of
probed point can be derived from the covarianceririat
Ihese results are shown in Table 6.

6. DISCUSSION

Table 6 summarises the results of the three prdjmaga
methods. All components are expressed in the coateli
system of the measuring machine. By principle, tiean
values calculated by the analytical and hybrid méshare
the same, since they derive directly from the mean
coordinates of the measured poin®).(The Monte Carlo
method, on the contrary, shows small bias. This begdue
to the nonlinearity of the equations which leadsntmn
symmetrical probability densities of the calculatedults.

The uncertainties of the three methods slightlfedjfbut
remain of the same order. In direction 2, the utadety is
about 0.1mm. The largest value is obtained through
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analytical propagationU(k=2)=0.123mm) and the smallest

estimation through hybrid propagatiot)(k=2)=0.1mm).
Monte Carlo simulation gives a median
(U(k=2)=0.110mm).

In the two other directions, the uncertainties astdd
by hybrid propagation or Monte Carlo simulation atese.
Analytical propagation leads to slightly overestieth
values.

result
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Table 6. Uncertainty results.

Analytical Method Monte Carlo Method
Meanvalue] U(k=2) | Meanvalue| U(k=2) [1]
1094,386 0,101 1094,385 0,077
1717,010 0,123 1717,009 0,110
702560 | 0111 | 702,617| 0,080 2
Hybrid Method
Mean value| U(k=2) [3]
1094,386 0,072
1717,010 0,100
702,560 0,098

(4]
7. CONCLUSIONS
(3]

In this paper, three methods were used to defime th
uncertainties of a reference frame built from thpménts [6]
acquired by a measuring machine.

The first method is a classical analytical propegmat
derived from the Guide to the Expression of Undetyain
Measurement (GUM). It required a tedious calculds o
partial derivatives defining the Jacobian matrix iakh
permits propagating the covariances of the measured
coordinates. It allows, nevertheless, expressiegrtl the
sensibility of the results versus each input patame

The second propagation technique is a hybrid smuti

based on a numerical estimation of the partialvadiies.
The third method is a Monte Carlo simulation prace3ur
study showed very close results of the two lastr@gghes,
while analytical propagation led to slightly ovetiemte the
uncertainties.

This study will permit improving the design of tball
tip pointer used in orthopaedic surgery and fincbest
practice for reference frame calculations.
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