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Abstract − Measurements are nowadays permanent at-

tendants of scientific research, health, medical care and 
treatment, industrial development, safety and even global 
economy. All of them depend on accurate measurements 
and tests, and many of these fields are under the legal me-
trology because of their severity. How the measurement is 
accurate, is expressed by uncertainty, which is obtained by 
multiplication of standard deviations by coverage factors to 
increase trustfulness in the measured results. These coverage 
factors depend on degree of freedom, which is the function 
of the number of implied repetitions of measurements, and 
therefore the reliability of the results is increased. The stan-
dard coverage factor is 1.96 for normal (Gaussian) distribu-
tions or near-Gaussian distributions, and the obtained ex-
panded uncertainty has the 95% statistical probability. In 
general, it is not possible to achieve the 95% confidence in-
terval by using the standard coverage factor 1.96, neverthe-
less of the degree of freedom. The present paper describes 
the method of estimating the expanded uncertainty by an al-
gorithm of this model based on the 95% confidence interval 
of any probability distribution of any shape, dealing with the 
A-type or the B-type uncertainty. Furthermore the coverage 
factor is determined due to the 95% confidence interval of 
the actual probability distribution. The algorithm success-
fully copes with adding two or more uncertainties with 
mathematical properties of sums, and is established in ac-
cordance with the standards and guides. The model is intro-
duced in procedures carried out in the calibration laboratory. 

Keywords: coverage factor, distribution shape coeffi-
cient, uncertainty. 

1. BASIC INFORMATION 

The expanded uncertainty is calculated according to the 
standard EA-4/02 [1] as the multiplication of the standard 
coverage factor 1.96 with the standard uncertainty when the 
degree of freedom is approaching to infinite value. This 
standard also points out the necessity to determine the con-
fidence interval of the 95% coverage probability of any dis-
tribution although it is not normal or Gaussian and further-
more it can be far from being normal that is being non-
Gaussian. To see the problem, we must be aware of dealing 
with several kinds of distributions not only with the normal 
distribution. Namely, the distributions of the B-type uncer-
tainties are mostly not normal, for instance the temperature 

drift, the time drift, and the resolution, all have the rectan-
gular distribution. Sometimes also the A-type uncertainties 
do not match with the normal distribution as they are result 
of regulated quantities, or are affected by the resolution of 
measuring device. In the latter case the probability distribu-
tion consists of two Dirac functions, one at the lower meas-
urement reading and the other at the upper measurement 
reading regarding the resolution. If the distribution is un-
known the coverage factor is calculated from Chebyshev's 
inequality [2] and is 4.472 for the 95% confidence interval. 
The uncertainty, the extended or the standard one, does not 
stand by itself, but contributes its portion to a combined un-
certainty. The probability distribution, which corresponds to 
the combined uncertainty, is the convolution of the contrib-
uting probability distributions. The convolution of two rec-
tangular distributions gives the trapezoidal distribution, or in 
some cases the triangular distribution, and the next rectan-
gular distribution convoluted to the trapezoidal or to the tri-
angular distribution results in the distribution with the 
square dependent tails, and the further rectangular distribu-
tions lead to the distribution with the polynomial dependent 
tails – an arrow-point shape, as defined in this paper. By 
further convolutions, the resulted distribution tends toward 
the normal distribution. Nevertheless, there are some not 
"well-behaved probability distributions" as quoted by the 
standard [1] to cause the coverage probability of less than 
95% by using standard coverage factor. Hence, very often 
we are to deal with distributions with the large probability 
around the mean values of measured quantity with some ex-
cessive, but still reliable values. The tails of such distribu-
tions are fatter than the tails of the normal distribution and 
the coverage factor must be greater than 1.96 to achieve the 
95% confidence interval. 

There are several sources of uncertainties with the rec-
tangular probability distributions, and when combined the 
resulted probability is either trapezoidal, triangular. The 
rectangular, trapezoidal and triangular probability are dis-
cussed in the standard EA-4/02 [1], and further on U-shaped 
distribution is dealt in NIS3003 [3] used with sinus wave 
measuring signal, but the other distributions and further 
convolutions of these distributions are rarely described in 
literature. There is an algorithm of combining the normal 
distributions and the rectangular distributions only, de-
scribed in the literature [4]. The symmetrical impulse meas-
uring signal is very common in measuring systems, for in-
stance the measurement of the contact resistance, the tem-



perature measurement of the resistance temperature sensors 
with the DC current and several measurements where the in-
fluence of hysteresis is being avoided. This measuring signal 
gives the symmetrical Dirac shaped distribution. 

2. THE CONTRIBUTING DISTRIBUTIONS 

The measured signal is continuous function depended on 
one independent variable, such as time or a counter. Its 
range has the supremum and the infimum, which are the 
bounds of the domain of definition of the corresponding 
distribution. The upper and the lower bounds are finite val-
ues. Amplitude A is defined as the maximum of the absolute 
values of the difference between the mean value of the 
measured signal throughout its whole definition interval and 
the lower and the upper bounds respectively. The corre-
sponding kind of distributions follows by the following 
equation: 
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We are looking for the coverage factor K̂ of any distribu-
tion, applied to the standard deviation, which gives the 95% 
confidence interval as follows: 
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at the infinite degree of freedom. 
There are upper limits of this coverage factor as follows: 
• any, even unknown distribution corresponds to Cheby-

shev's inequality [2], therefore: 
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• any, even unknown distribution with the finite upper and 
lower bounds corresponds to (1), therefore according to 
(1) and (2), the upper limit of the coverage factor is: 
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where the equality is present only, when the cover factor of 
the 100% confidence level is considered. 

The coverage factor of each known distribution is cal-
culated by using the (2). The results of the calculation for 
the dealt distributions are presented in Fig. 1 as two func-
tions: the first one is the function (C), which is calculated 
for the 95% probability level by (2), and the second one is 
the function (A) for the 100% probability level calculated by 
(1) and (4). The upper limits are also shown in this figure: 
the maximum of the function (C) for the 95% probability 
level of an unknown distribution due to Chebyshev's ine-
quality due to (3). The functions (A) and (C) in Fig. 1 make 
the boundary of the area of the probability levels from 95% 
up to 100%. There is also the position of Gaussian distribu-
tion marked in Fig. 1. 

 

0.0

1.0

2.0

3.0

4.0

5.0

0 1 2 3 4 5 6 7 8
Distributions

C
ov

er
ag

e 
fa

ct
or

 (1
.9

6×
C

) o
ve

r s
ta

nd
ar

d 
de

vi
at

io
n

95%<P <100% P =100%

P <95%

unknown triangular

EA-4/02
trapezium

shaped

rectangular U shaped Dirac shapedV shaped

NIS 3003
U shaped

arrow
shaped

A

BC

Gaussian 

G
au

ss
ia

n 

 

Fig. 1: The cover factors of several distributions and statistical 
confidence of the acquired data interval with the following legend: 
 A ... the cover factors of the 100% confidence level deter-

mined by (1) and (4), 
 B ... the cover factors of the 95% confidence level using the 

presented model and so far calculated by (9), 
 C ... the cover factors of the 95% confidence level calcu-

lated by integration (2). 

There is no problem to determine the coverage factor of 
the probability distribution defined by the probability den-
sity p(X) described by the analytic function, by the tabled 
values or by the geometrical definition. But, determining the 
coverage factor out of statistically acquired data, we have to 
establish the model, which solution gives results within the 
mentioned area with the probability levels from 95% up to 
100%. The solution given by the presented model is one of 
many possible solutions, and it is shown in Fig. 1 as the 
function (B). 

3. THE KURTOSIS AND MODELLING THE 
COVERAGE FACTOR 

The kurtosis is the parameter of the descriptive statistics, 
which gives information about the probability distributions 
of acquired data that are created by our measurements. It is 
the classical measure of non-gaussianity, and it expresses 
the similarity to the normal or Gaussian distribution. The 
distribution shape is quantified by it, but the mapping of the 
set of the shapes to the set of their kurtosis numerical values 
is surjection. There is no rule to get the distribution shape 
out of the kurtosis. From the kurtosis, it can be concluded 
only that: 
• a certain distribution is peaked around its mean and have 

the fat tails – leptokurtic distributions; 
• it is flat (could be the rectangular distribution) or even 

concave (could be the U-shaped distribution) with the 
thin tails or without them – platykurtic distributions; 

• it could be very similar to the normal distribution – 
mesokurtic distributions. 

The kurtosis is the fourth standardized moment k4 about 
the mean, and is defined as the quotient of the fourth mo-
ment m4 about the mean and the fourth power of the stan-
dard deviation σ, and it is: 
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The kurtosis of the normal distribution is taken as 2.45, 
and the skewness of the normal distribution or any symmet-
rical distributions is zero. 

The basis of the present modelling of the coverage factor 
of the 95% confidence interval is the kurtosis, because it is 
the statistical parameter that quantifies the shape of the 
analysed probability distribution. The coverage factor, in-
cluding all contributed coefficients of the presented model, 
is basically the square root of the ratio between the kurtosis 
k4 of the analyzed distribution and the kurtosis of the normal 
distribution, corrected by the empirical coefficient κ and 
multiplied with the coverage factor of the normal distribu-
tion at the infinite degree of freedom: 
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where the empirical coefficient κ is a function of the abso-
lute value of skewness k3, which is determined empirically: 
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The empirical coefficient is necessary to correct the ba-
sic coverage factors of skewed distributions with the finite 
bounds of their domain. This is not the case with the normal 
distribution or near-normal distributions or any approxi-
mately symmetrical distribution, where this empirical coeffi-
cient is unit. 

Due to (6) the coverage factor of the probability distribu-
tion with the finite bounds of its domain actually is: 
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and further on taking into account the upper limits of the 
coverage factor due to (3) and (4) the shape coefficient C of 
the probability distribution is: 
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This coverage factor at the infinite degree of freedom is 
graphically shown as the function (B) in Fig. 1. Its values 
are in the lower range of the area indicating the confidence 
interval from 95% up to 100%, which is very good. The ad-
vantage of this coverage factor is, that it consists of two 
multiplicands as in (8): the first one – K(ν) is dependent on 
degree of freedom, as it is generally known as the coverage 
factor, and the other - C depends on the shape of the prob-
ability distribution, mainly on the kurtosis and we named it 
as the shape coefficient. 

So far, the shape coefficient is defined, but if it should be 
useful, a mathematic operation(s) between several shape co-
efficients must be established. 

4. THE CONVOLUTION AND THE ADDITION 
ALGORITHM 

When combining several probability distributions in un-
certainty calculations the resulted probability distribution is 
the convolution of all participant distributions. The convo-
lution of two probability distributions is: 

( ) ( ) ( )

( ) ( ) τττ dpXp

XpXpXp

⋅⋅−=

=⊗=

∫
∞+

∞−
21

2112

 (10) 

and further on for the N convoluted distribution written just 
symbolically as: 

 ( ) ( ) ( ) ( )XpXpXpXp Ni ⊗⊗⊗⊗=Σ KK1
 (11) 

Each distribution contributes the amplitude Ai, the stan-
dard deviation σi about the mean and the shape coefficient 
Ci to the resulting shape coefficient CΣ that is obtained by 
the following addition algorithm: 
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The addition of the shape coefficients is commutative 
and associative and the resulted shape coefficient is a mem-
ber of the same set of values as the participant shape coeffi-
cients in the evaluating process, which all are the necessary 
mathematic conditions for the applied methods of deter-
mining the combined uncertainties as it is prescribed by the 
standard [7] as universality, internal consistency and trans-
ferability. 

The expanded uncertainty is obtained by multiplying the 
standard deviation or the combined uncertainty, which is 
appropriate, by the coverage factor [1] and the shape coeffi-
cient, so that the expanded uncertainty is estimated to have 
at least the 95% confidence level: 
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therefore the expanded uncertainty intervals ±U or ±Uc 
about the mean of the measured or calculated results are the 
95% confidence interval. 

5. THE CASE STUDY 

Although the presented method was used in the calibra-
tion laboratory and it was considered as very effective, the 
authors decide to demonstrate the usage of this method in a 
very specialized scientific field of electron impacts to gas 
molecules and to steady material such as an electrode, and 
further on the voltages needed for ionization by these two 
kinds of the impacts were determined probabilistically with 



the appropriate expanded uncertainties and further on the re-
sultant expanded uncertainty. Nevertheless, what the scien-
tific problem was, we have two probability density distribu-
tions named as the first and the second probability distribu-
tion in Fig. 2. The domains of these two distributions were 
to be added together, hence these two distributions were 
convoluted and a resultant distribution, also in Fig. 2, is 
named as the convolution probability distribution. 
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Fig. 2: The 1st, 2nd and convolution probability densities with the 
intervals oudside 95% conidence interval. 

For the first and the second distributions, and further on, 
as their convolution is practically carried out, also for the 
convolution distribution, the shape coefficients C are calcu-
lated by (9) and the uncertainty intervals on the basis 
U = 1.96⋅C⋅σ are established for all three distributions, and 
the confidence levels of these uncertainty intervals are ob-
tained by the integration of these probability density distri-
butions throughout the uncertainty intervals. The results are 
shown in the second, third and fourth column of Table 1. 

Table 1: Comparison of results achieved by convolution and by 
addition algorithm. 

 1st 
distribution 

2nd 
distribution 

convolu-
tion 

addition 
algorithm 

C 0.948 0.918 0.945 0.993 
confidence 

of ±U 96.18% 96.12% 95.41% 96.93% 

mean 
-1.96·C·σ 5.754 10.496 18.672 18.597 

mean 9.663 19.241 28.631 28.905 
mean 

+1.96·C·σ 13.573 27.987 38.591 39.212 

minimum 
in view of 

±U 
outside inside outside outside 

maximum 
in view of 

±U 
inside outside outside outside 

 
Further on, the shape coefficient CΣ is determined by ad-

dition algorithm (12) of the presented method and also the 
uncertainty interval ±Uc defined by (13) on the basis of 
K(νeff) = 1.96 are recalculated for the convolution probabil-
ity distribution. The confidence level of this uncertainty in-

terval is determined too. These data, which are the results of 
the addition algorithm, are presented in the fifth column of 
Table 1. 

So far, the fourth and the fifth columns of Table 1 repre-
sent the data of the same distribution, namely of the convo-
lution probability distribution, and hence are comparable, 
although the data in the fourth column are obtained by the 
convolution integral and the data of the fifth column by the 
addition algorithm. There is quite a large difference between 
the shape coefficients, but it is not significant in this case to 
the combined uncertainty and its confidence level. As we 
see, the confidence levels attained by the convolution and by 
the addition algorithm match very well, but the latter one is 
a little bit greater, but it belongs also to the wider uncer-
tainty interval. In Fig. 2 are seen the intervals, which are 
outside the uncertainty intervals with the confidence levels 
for the fist, the second and the convolution distributions, as 
stated in Table 1. But the positions of minima and maxima 
of these distributions domains in view of the uncertainty in-
tervals are described also in Table 1. 

The uncertainty intervals of the 95% confidence level is 
established by presented method with the shape coefficients, 
obtained by kurtosis, which is the fourth standardized mo-
ment about the mean, without calculating the probability 
integrals as in (2), or previously calculating the convolution 
integral of the participatory probability distributions as in 
(10) when the sum of the uncertainties are required. 

6. CONCLUSIONS 

The presented method of evaluating the expanded un-
certainty of the measurand on the basis of the 95% confi-
dence interval has the following features: 
• it determinines uncertainty intervals of the 95% confi-

dence level of arbitrary non-Gausian probability distri-
butions without resolving its borders by the integration 
of their densities or calculating convolution integrals 
when adding them together; 

• it is universal [7], because this algorithm is applicable to 
all kinds of measurements, to the A and B-type of the 
uncertainty evaluation and to all type of input data dis-
tribution; 

• it is internally consistent [7], which mathematically 
means being commutative and associative, so that com-
bined uncertainty is independent of grouping and de-
composing the contributing components; 

• it is transferable [7], which mathematically means that 
the resulted shape coefficient and the participant shape 
coefficients are the members of the same set of values or 
are fitting the same function, so the one result can be di-
rectly used as a component in evaluating the uncertainty 
of another measuring process; 

• the convolution of many normal distributions gives nor-
mal distribution and so does the resulted shape coeffi-
cient; further on, the convolution of great number of 
whatever distributions leads to mesokurtic distribution 
and even to normal distribution and so also does the re-
sulted shape coefficient, hence the central limit theorem 
is met by this method [1]; 



• the expanded uncertainty depends on its effective de-
grees of freedom as in (13) so that the proper reliability 
is achieved [1]; 

• the expanded uncertainty estimated by this method, as in 
(13), takes into account the effective degree of freedom 
of the output estimates and the non-normality or non-
gaussianity of the probability distributions and so far 
meets regulations [1] about the 95% confidence interval. 
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