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Abstract − The accurate measurement of many power 

quality parameters using digital sampling techniques relies 

on synchronisation between the sampling system and the 

signal under analysis. If synchronisation is not available 

measurement errors result due to the difference in frequency 

of the digitised signal and that expected and based on the 

sampling clock of the measurement system. 

A method is presented of correcting for this lack of 

synchronisation. This method relies on a time domain 

interpolation technique to modify the sampling rate of the 

captured signal in software. In order to find the correct 

sampling rate a scanning technique is used which requires 

some method of assessing the lack of synchronisation and 

associated error in the analysis of the signal. A number of 

methods of achieving this are presented and compared. The 

suitability of the algorithm for power quality measurements 

under noisy conditions is assessed. 

Keywords: asynchronous sampling, power quality, 

spline interpolation. 

1.  INTRODUCTION 

In the laboratory, measurements of power quality 

parameters described in IEC 61000-4-30 [1] are relatively 

straightforward. Digital sampling techniques can be used 

and the sampling clock can usually be synchronised to the 

signal under analysis. Power quality measurements on the 

electricity supply network are considerably more difficult. 

There is often no means of synchronising the measurement 

system with the signals to be analysed, which leads to errors 

in the measurements of parameters that rely on an assumed 

frequency, e.g. harmonics obtained from the DFT and 

flicker, which relies on filters which are designed based on a 

given sampling rate and frequency. Further, measurements 

conducted in the field, outside of the laboratory are 

corrupted by noise, making analysis more difficult. 

The digital measurement and analysis of many power 

quality measurements relies on an assumed periodicity in 

the sampled waveform. For example, in the case of 

harmonics measurements, if the period of the waveform is a 

non-integer number of samples the energy contained in the 

harmonic bins leaks across the spectrum. This leakage is due 

to a difference in the sampling rate from that of the ideal 

rate, which would result in an integer number of samples, 

i.e. 

 Tff s ⋅≠  (1) 

where fs is the sampling rate in Hz, f is  the signal frequency 

and T is the period of the signal in samples. The error in 

sampling rate, ∆, is given by equation (2), as follows  

 Tff s ⋅−=∆  (2) 

A number of techniques of correcting for the error have 

been proposed. The majority of these focus on frequency 

domain interpolation and windowing techniques [2], [3] to 

correct for the leakage in harmonic measurement. Others 

propose methods of correcting for the error e.g. [4], but 

some of these assume that the error ∆, is known and do not 

provide a method of finding the error. Time domain 

interpolation techniques have also been used but do not 

necessarily provide a definitive method of determining the 

corrected signal, e.g. [5]. Other techniques rely on 

synchronisation hardware or a modification of the sampling 

rate and re-sampling at the new rate [6]. 

Another promising technique is based on a modified 

version of the sine fitting procedure described in [7] and [8]. 

This method, which has yet to be published, was developed 

at the Metrology Institute of the Republic of Slovenia 

(MIRS) and the Slovenian Institute of Quality and 

Metrology (SIQ). Comparisons between the method in this 

paper and that developed at MIRS/SIQ have been carried 

out with colleagues at MIRS/SIQ and it is hoped that these 

comparisons will be published at a later date. 

The technique described in the next section of this paper 

is intended to be suitable for a wide variety of power quality 

measurements, and to be applied entirely in software 

requiring no hardware modifications such that any sampled 

dataset can be analysed. It relies on a cubic spline 

interpolation of the signal in a similar manner to [5], which 

is used to modify the sampling rate in software. The 

interpolation is shown to be sufficiently accurate for the 

reproduction and correction of the signal. A scanning 

technique is then used where the sampling rate is swept 

across a range of frequencies and an assessment is made of 

the correctness of the modified sampling rate using a cost 

function, which is minimised. The choice of cost function is 

dependent on the expected characteristics of the signal to be 

analysed and on the power quality parameter to be 

measured. Several cost functions are described in Section 3, 

which are intended to be suitable for the measurement of 

harmonics for periodic, stationary waveforms. The results of 



comparisons with these cost functions are presented in 

Section 4. 

Further work is required to improve the performance of 

the algorithm under noisy conditions and to expand on the 

method for the measurement of other power quality 

parameters and waveform types (e.g. waveforms modulated 

in amplitude and frequency). This work is focussed mainly 

on the improvement of the cost functions. 

2.  INTERPOLATION AND SCANNING METHOD 

2.1. Description of the algorithm 

 

The method can be broken down into a number of steps: 

 

1. An initial range of estimated frequencies (e.g. a 

range of 2 Hz), fR, is selected for the frequency 

scan. This is centred around the ideal frequency 

(e.g. 50 Hz), fs/T, where fs is the sampling rate used 

and T is the expected period of the signal in 

samples. The initial estimate of frequency, fe, is set 

to (fs/T)-(fR/2). The correction factor, C, for the 

sampling rate is computed using the following 

equation. 

 1−
⋅

=
e

s

fT

f
C  (3) 

The initial step size in frequency and a threshold 

for the minimum desired frequency resolution, λ, 

are selected. 

2.  The splines of the waveform are computed. The 

algorithm used to compute the splines and 

interpolate the sampled signal is taken from [9]. 

3. Each of the N sampled data points, S(i), is 

interpolated between adjacent samples S(i) and 

S(i+1) or S(i-1), hence effectively changing the 

sampling rate, to obtain an estimate of the signal at 

a new sampling rate, modified by the correction 

factor, C, such that S(i) is replaced with s′(i·(1+C)), 

which is obtained by interpolation. 

4. An estimate of the error in the signal is obtained 

using one of the cost functions described in 

Section 3 below. 

5. The estimate of the frequency is increased by a 

chosen amount, ∆f (say 0.1 Hz), the correction 

factor C is computed from the new frequency 

estimate and steps 2 and 3 are repeated. This step is 

repeated until a minimum is reached for the cost 

estimate obtained in step 3. 

6. Once a first estimate for the frequency has been 

obtained a finer scan can be used either side of this 

estimated value. So, say 50.2 Hz was found as the 

estimated rate from the first scan. A new scan can 

then be performed starting at 50.15 Hz, increasing 

in steps of 0.01 Hz, until a minimum is again found 

for the cost function. Finer and finer scans can be 

used to obtain more and more accurate estimates, 

until the desired frequency resolution, λ, is 

obtained. 

The algorithm is summarised in the flowchart in Figure 1 

below. 

The success of the algorithm is limited by the quality of 

the interpolation and of the suitability of the chosen cost 

function used to estimate the error in the signal due to 

asynchronous sampling. The next subsection addresses the 

former of these criteria and Section 4 assesses the latter by 

comparing various cost functions. The cost functions can be 

assessed without using interpolation by simulating signals 

sampled at the modified sampling rates used during the 

scanning procedure. This is explained further in Section 4. 
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Fig. 1.  Algorithm flowchart. 

2.3. Assessment of the quality of the interpolation 

It is very important that the interpolation provides an 

accurate representation of the sampled signal. The 

assessment of the accuracy of the interpolated signal can be 

achieved in simulation by comparing the interpolated signal, 

corrected for a known error in the signal frequency, with 

that of a simulated signal of the ideal frequency (i.e. the 

frequency which results in an integer number of samples per 

period). 

It can be shown that the accuracy of the interpolation is 

sufficient to within 150 ppm of RMS component amplitude 

for signal components having frequencies of less than 

around fs/12.5, improving to within 0.1 ppm for components 

having frequencies of less than fs/100. As such all harmonics 

of a 50 Hz sinusoidal waveform composed of harmonics up 

to the 40
th

 (important for power quality work) can be 

recovered accurately to within 150 ppm for the higher order 

harmonics and within 0.1 ppm for the lower order 

harmonics for a sampling rate of 25 kHz. Further, the RMS 

difference between samples for the corrected interpolated 

waveform and that sampled at the ideal rate is less than 

5 ppm of RMS signal amplitude for a waveform composed 

of harmonics up to fs/12.5 and less than 0.5 ppm for a 

waveform composed of harmonics up to fs/25. 

Performance under noise is more difficult to assess, but 

it can be shown in simulation that any deviations in the 

corrected signal from that of the ideal signal are within the 



added noise, apart from the residual errors described in the 

previous paragraph. The results presented in Section 4 show 

that there is some deviation in the recovered frequency at 

higher noise levels when using interpolation compared to 

that when re-sampling simulated waveforms at different 

sampling rates, but provided an appropriate cost function is 

chosen, the resulting errors in the harmonic amplitudes are 

acceptable for the level of added noise. 

3.  METHODS OF ERROR ASSESSMENT 

As explained earlier, in order to find the ideal sampling 

rate for a given signal an appropriate cost function must be 

used to determine the error in the analysis of the signal 

caused by asynchronous sampling. Five cost functions are 

suggested here, all of which should give a minimum when 

the ideal sampling rate is found. 

The following measures are subjective and rely on a 

certain amount of prior knowledge about the signal to be 

analysed. They are specifically selected for harmonic 

analysis of stationary waveforms. For other types of 

waveform or power quality measurement parameters 

different cost functions would be required. Modifications 

are also required to improve the performance under noisy 

conditions. These modifications are currently under 

development. 

The performance of the algorithm with each of the cost 

functions under various conditions is assessed in Section 4. 

3.1. Interharmonics and high harmonics sum 

Asynchronous sampling results in spectral leakage, 

therefore a measure of the amount of leakage can provide an 

assessment of the deviation in sampling rate from ideal. An 

estimate must first be made of the expected spectral 

characteristics of the signal under analysis. A Discrete 

Fourier Transform (DFT) of the signal is performed and the 

sum of the harmonics and interharmonics that are not 

expected to occur is calculated. This sum is then divided by 

the fundamental amplitude to obtain the error metric. 

The number of cycles to use for the DFT and the number 

of harmonics to use in the cost function depend on the 

expected characteristics of the signal under analysis and are 

the subject of further investigation. For the example given in 

Section 4 only interharmonics up to the 40
th

 harmonic are 

minimised and not harmonics. 

3.2. Phase drift 

If a signal is sampled asynchronously then the difference 

in frequency of the signal from the assumed frequency will 

result in a phase drift with time on a cycle-by-cycle basis. 

The phase of the fundamental is computed using Fourier 

analysis for two subsets of the sampled signal, spaced an 

integer number of estimated signal periods apart. The 

difference in phase of the two subsets is used as the cost 

measure.  

The chosen length and separation of the two subsets 

depends on the characteristics of the signal under analysis. 

In an ideal case where the phase of the underlying signal is 

constant and any variation purely down to the error due to 

asynchronous sampling both should be maximised for best 

results, but the choice in a real situation would depend on 

how stable the underlying signal is assumed to be. Longer 

separations and subset lengths are more robust to noise, but 

more susceptible to errors due to frequency and phase 

variations in the signal. 

A variation in phase with time is equivalent to a 

frequency offset. Therefore an estimate of the frequency 

error can be obtained by differentiating the measured phase 

with respect to time. The correction factor, C, defined above 

can then be calculated using the following equation. 
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where ∆φ is the phase difference between the two 

subsets and ∆n is the time spacing in samples. fe is set to fs/T 

for the first iteration. Equation (4) is equivalent to the 

expression used in [6]. 

The spacing between the two subsets must obviously be 

kept below 2π radians, otherwise erroneous results would be 

obtained. Adjacent cycles can be used to estimate the initial 

frequency error and associated correction factor, followed 

by wider spacings for subsequent iterations. 

This procedure leads to a much faster convergence of the 

algorithm than the scanning technique shown in Fig. 4. 

However, for the results in Section 4 the scanning technique 

is used in order to ensure consistency of approach for the 

comparison of cost functions. 

3.3. Energy concentration 

A function that is analogous to a simplified version of 

information entropy [10] can be applied to the Fourier series 

of the sampled signal to provide a measure of the 

concentration of the energy in the signal across the 

spectrum. A lower value should indicate that more energy is 

concentrated in fewer Fourier coefficients. The energy 

concentration can therefore provide an estimate of the 

amount of smearing or leakage across the spectrum. 

The energy concentration measure, γe, is given by the 

following equation,  

 ∑
∑
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−

=

=
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0
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h
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h

h

h

e

X

X
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where X is the Fourier series of the sampled signal, h is 

the Fourier coefficient number and H is the number of 

Fourier coefficients. 

3.4. Fundamental sidebands 

This is a special case of the cost function in section 3.1, 

where only the amplitudes of the interharmonic sidebands 

near to the fundamental, divided by the fundamental 

amplitude, are used as the cost measure. The sidebands can 

also be used in conjunction with the phase drift method as 

described in [6]. 



3.5. Time series comparison 

If the signal is assumed to be periodic then each cycle 

should be identical. The sampled signal is divided into two 

subsets of the same length having an integer number of 

cycles (based on the assumed frequency) and the difference 

between the subsets on a sample-by-sample basis is taken. 

The RSS sum of these differences is used as the cost 

measure. A similar argument applies to that used for the 

phase drift method described in Section 3.2 regarding the 

length and spacing of the subsets. The frequency resolution 

of the previous scan can be used to calculate the maximum 

allowable spacing. 

4.  RESULTS 

Two signals were used to assess the performance of the 

algorithm. The first was a simple sine wave with no 

harmonics and the second a distorted waveform composed 

of harmonics up to the 40
th

 with relative amplitudes and 

phases set to those in [11]. This waveform is based on the 

limits specified in IEC 61000-3-2 [12] for Class A 

equipment. 

The waveforms were first simulated and analysed in 

software and the results of this analysis are shown in Section 

4.1. 

The undistorted sine wave and Class A waveform were 

then generated as real signals using two voltage sources and 

sampled using a 24-bit ADC. The undistorted sine wave was 

generated with a relatively high quality, calibrator grade 

voltage source and also using a 12-bit arbitrary waveform 

generator (ARB). The Class A waveform was generated 

using the ARB. A measurement of the generated signals was 

first made using synchronised sampling and the results were 

compared with those using asynchronous sampling with the 

correction technique. These results are shown in Section 4.2. 

4.1 Results of simulations 

For the simulations the frequency of the signal was set to 

50.5685721561313 Hz. The signal was sampled at a rate of 

25 kHz, such that the ideal period was 500 samples. The 

signal was 20 cycles long. 

Five tests were performed on the Class A waveform 

using each of the cost functions defined in Section 3. The 

first test is on the simulated signal with no noise, this signal 

is unquantised apart from the 32-bit precision of the 

arithmetic. For the second the Class A waveform is 

quantised with 16-bit resolution. Pseudo random white noise 

of 0.1, 1 and 10 % of signal amplitude is then added for the 

other tests. 

The modification to the sampling rate for the scanning 

procedure described in Section 2 above was carried out in 

two ways. The first was to interpolate between samples to 

achieve the modified sampling rate, as would be required for 

analysis with real waveforms. The second was to simulate 

the signal with the modified sampling rate. 

The errors in estimated frequency recovered from the 

tests, obtained with each of the cost functions, are given in 

Table 1. 

Comparisons of the errors in frequency estimate 

obtained when using interpolation to change the sampling 

rate and when using a re-sampled simulated signal, indicate 

that errors in recovered frequency are increased by the 

interpolation in noisy conditions. Much of the error is down 

to the cost function. Therefore the focus of future work will 

be on finding a cost function that is not so affected by noise 

and improving the interpolation method under noise. 

Table 1.  Frequency errors in ppm of nominal. Errors when re-

sampling without using interpolation are shown in brackets. 

 

Due to the added noise, it is difficult to assess the true 

error in the recovered corrected signals. Therefore 

interpolated noise-free signals were simulated having 

correction factors calculated from various representative 

frequency errors. A DFT was performed on the corrected 

signals. The effects of the frequency errors on the harmonic 

amplitudes of the corrected signal are summarised in 

Table 2. 

Table 2.  Errors in harmonic amplitude in ppm of reading for 

various errors in frequency. For reasons of space only a 

representative set of harmonics results are shown. 

Harmonic 

number

Frequency 

error (ppm)

0.00 -0.02 -14.36 -88.60 -97.84

0.56 -2.77 -47.13 -158.4 -72.39

2.81 -14.10 -186.5 -457.9 8.23

5.58 -28.99 -379.1 -877.6 61.42

26.60 -177.7 -2662 -6060 -1415

49.92 -437.7 -7384 -17186 -8068
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As can be seen from the tables, some of the cost 

functions can provide an accurate estimate of the deviation 

in the sampling rate from ideal and the signals can be 

corrected to sufficient accuracy under certain conditions. 

The performance is considerably worse under conditions of 

high noise. For example, a 50 ppm error in estimated 

frequency would result in an error of -6060 ppm for the 39
th

 

harmonic, as can be seen from Table 2. The frequency error 

of 67.3 ppm, which results when using cost function 3.2 for 

a noise level of 10 %, would therefore result in an error 

worse than -6060 ppm. 

The accuracy is similar for other types of waveform, 

Cost 

function
Signal 

type

-6E-06 1E-04 -6E-06 -1E-07 -2E-05
(-1E-07) (-1E-07) (-1E-07) (-1E-07) (-1E-07)
-3E-03 -2E-02 -3E-03 -3E-03 -6E-03
(1E-04) (1E-04) (1E-04) (1E-04) (1E-04)

0.09 0.70 0.08 1.00 0.01
(-0.01) (0.78) (-0.13) (0.83) (0.03)

0.9 6.7 0.8 9.6 0.1
(-0.1) (7.4) (-0.2) (7.4) (-0.1)

9.0 67.3 9.0 102.1 -5.6
(-0.3) (73.2) (-0.3) (76.1) (-4.5)

1 % noise

3.4 3.5

10 % noise

3.1 3.2 3.3

Unquantised

Quantised

0.1 % noise



although the cost functions that perform well here may not 

do so in other cases. For example, when using cost function 

3.1 or 3.3, with the same settings used here, for an 

undistorted sine wave, the frequency error with a 10 % noise 

level is around 40 ppm regardless of whether interpolation is 

used or not. This leads to an error of around 20 ppm in the 

fundamental amplitude. The development of an appropriate 

cost function that is sufficiently robust to noise for a larger 

range of signals is ongoing. 

4.2 Results with real signals 

In order to assess the synchronisation methods under 

more realistic conditions two signals from two different 

voltage sources were used. The signals were sampled using 

a 24-bit ADC with a bandwidth of 60 kHz. For the 

synchronous case the sampling clock was set to 25 600 Hz, 

giving 512 samples per cycle for a 50 Hz waveform. For the 

asynchronous case the sampling rate was set to 25 817.9175 

Hz, giving an apparent frequency of approximately 

49.577972352 Hz. As above 20 cycles are used for the 

analysis. 

The first signal was a nominally 50 Hz sine wave. This 

signal was first produced using a high quality source 

(“Source 1”) that was phase-locked to the sampling clock of 

the measurement system. The signal is stable in amplitude, 

but the synchronisation is affected slightly by the frequency 

variation of the source due to imperfections in the phase-

lock mechanism. This signal was also generated using the 

ARB (“Source 2”) described below. 

The second signal was a nominally Class A waveform as 

described in Section 4.1, again with a nominal frequency of 

50 Hz. This signal was generated using Source 2, which had 

multiple channels. In this case the sampling clock for the 

ADC was supplied using a separate channel of Source 2. As 

such the sampling clock and the frequency of the generated 

waveforms were well synchronised. Source 2 is known to 

have relatively poor phase and amplitude stability and was 

chosen for this purpose. 

The reliability of the correction technique and cost 

function is affected by the phase and amplitude stability of 

the signal sources. A Short Time Fourier Transform (STFT) 

was used to measure the phase variation with time of the 

fundamental component for both sources. An example of 

this variation for Source 2 is shown in Figure 2. 

Fig. 2.  Phase variation of fundamental for ARB 

As can be seen in Figure 2, the phase of the waveform 

from Source 2 is subject to random variations and to slow 

variations that are probably mains beat. Source 1 is also 

subject to some random variations and mains beat, but this is 

approximately a factor of 100 smaller. 

Five tests were performed using each of the cost 

functions defined in Section 3 for the two waveforms for the 

synchronous and asynchronous cases. 10 measurements 

were made and averaged to give the results for each case. 

The differences in estimated frequency from the nominal 

assumed frequency, obtained with each of the cost 

functions, are given in Table 3 for the synchronous and 

asynchronous cases. The standard deviations from the 10 

measurements are shown in brackets. 

Table 3.  Frequency errors in ppm for synchronous  and 

asynchronous cases. 

 

As can be seen from Table 3, the apparent quality of the 

frequency estimate is clearly affected by the input 

waveform. For the relatively stable undistorted sine wave 

generated with Source 1, the method gives fairly similar 

results with all five cost functions. There is some variation 

in frequency with time, which is probably largely due to the 

frequency variation in the source due to imperfect phase 

locks to the clock signal. Much of the standard deviation can 

most likely be attributed to this variation, as results with the 

five cost functions agree within 0.03 ppm for the majority of 

the 10 measurements. 

For the noisier but well synchronised Class A waveform, 

the results have larger differences. The phase drift (3.2) and 

fundamental sidebands (3.4) cost functions are particularly 

adversely affected, also having a higher standard deviation 

than the other cost functions. This is to be expected given 

the phase and amplitude modulation of the waveform. 

The lower errors and standard deviations of the Class A 

waveform results with cost functions 3.1 and 3.3 may 

indicate that they are more applicable to waveforms of this 

type, which have some degree of modulation. They are not 

so affected by phase variations as cost function 3.2 and are 

unlikely to be as adversely affected by amplitude variations 

as cost functions 3.4 and 3.5. Cost functions 3.1 and 3.3 are, 

however, more computationally intensive and perform 
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poorly under noisy conditions when the level of harmonic 

distortion is low. This can be seen in the results for the sine 

wave when generated with Source 2. All five cost functions 

give a similar performance with this waveform. 

Also, the presence of interharmonics is not tested for 

here, but cost function 3.1 would be more likely to perform 

worse under those conditions. 

As with the simulated results, a DFT was performed on 

the corrected waveform from the asynchronous 

measurements and on both the corrected and uncorrected 

waveforms from the synchronous measurements to 

determine the effect of frequency errors on the harmonics. 

For the sine wave generated with both sources, the corrected 

asynchronous measurements were in agreement with the 

synchronous measurements within the standard deviation 

(<10 ppm for Source 1 and around 200-300 ppm for 

Source 2). The results for the synchronous case for the 

Class A waveform are shown in Table 4. The results show 

the difference between the DFT of the uncorrected and 

corrected synchronised waveform. 

Table 4.  Differences in harmonic amplitude in ppm of reading. For 

reasons of space only a representative set of harmonics results are 

shown. 

 

In the synchronous case the differences refer to the same 

waveform and are therefore not affected by the standard 

deviation of the measurements, only the frequency estimate 

and correction technique. The frequency errors for cost 

functions 3.2 and 3.4 can be seen to have a significant effect, 

which is comparable to the typical simulated errors in 

Table 2. For the asynchronous case all the corrected results 

agree with the synchronous results within the standard 

deviation (around 400-500 ppm for the fundamental). This 

could lead one to believe that the cost functions and 

correction technique are good enough for the signals 

presented. However, though of poor quality from a 

laboratory metrology point of view, this signal is still 

relatively benign compared to those arising on the electricity 

supply network and the observed differences in frequency 

estimates could have greater implications for different 

waveforms. 

6.  CONCLUSIONS 

The described algorithm works well for measurements in 

controlled conditions where noise levels are low and the 

waveforms are stable and stationary. The performance of the 

algorithm under various conditions is determined by the 

choice of cost function to assess the degree of 

synchronisation. The cost functions used in the analysis 

presented in this paper work well for certain signals, but are 

not ideal under noisy conditions or where the signals are 

subject to large amplitude and phase variations. Further 

work is required to find a cost function appropriate for 

power quality measurements that copes under these more 

demanding conditions. 
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Harmonic 

number

Cost 

function

0.1 0.1 1.8 2.5 -2.4

-4.5 -3.2 -72.8 -96.5 69.7

0.1 0.1 2.0 2.8 -2.6

-5.5 -9.5 -147.1 -220.8 123.3

0.0 0.2 3.1 4.6 -3.5

25 39

3.3

1 5

3.1

3.2

Synchronous case

3.5

40

3.4
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