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Abstract − This work proposes a method that allows the 

remote measurement of the electric power demand of 
clusters consisting of a small group of consumers that are 
connected to a line section of the distribution network and 
concentrated in an electricity pole. 

The method is based on the detection of the electrical 
current and voltage changes at both ends of a distribution 
line section, and then computing the demand of the clusters. 
Due to the statistical nature of the electricity consumption, 
coincident demand steps of the users can cause some error 
that can be considered as noise perturbing the measurement 
signal. The measurement error characteristics are predicted 
through simulation. 

The obtained results show that the new technique can be 
an efficient tool to reduce technical and non-technical losses 
in the electricity distribution network. 

Keywords: Distribution networks, electricity demand 
measurement, non-technical losses. 

1.  INTRODUCTION 

The energy distribution companies are strongly affected 
by technical and non-technical losses. As measurement of 
electric power consumption is directly related to the revenue 
of the companies, an important aspect is the development of 
new technologies and systems to reduce those losses [1]-[3]. 

For non-technical losses (NTL), commonly associated 
with irregular connections and adulteration of the 
characteristic of meters installed in the consumers’ 
premises, the improvement of measurement techniques and 
equipment that minimize this possibility are crucial. 

The affected elements and authorities have developed 
methods to reduce NTL, primarily based on detection by 
utility companies’ meter reading employees and statistical 
analysis of customer information. 

Despite the best efforts, the current results of NTL 
measurements are often inaccurate at best, because the 
figures rely heavily on the records of detected cases, rather 
than by actual measurement of the electrical power system. 
Furthermore, the majority of measurement equipment in 
electrical power systems does not facilitate time-varying 
calculations of system losses, which makes accurate 
determination of NTL impossible [4]. In fact, any given 
power system would have some loads that are not metered at 

all, which would affect the outcome in any calculations as 
NTL. 

The apparent obvious solution to this is to install meters 
at every billed load and to use meters that sample load 
power or voltage values at reasonable intervals. However 
this solution is nearly unfeasible to implement in large 
service areas because of the logistical and economical costs 
of the meters. Small-to-medium-scale implementation 
remains a possibility because of the lower costs and the 
added application of real-time pricing [4], but always there 
is the possibility of some kind of meter adulteration or 
bypassing. 

In order to deal with the pointed difficulties, we propose 
an alternative approach to controlling the technical and non-
technical losses over the low-voltage distribution network 
by measuring the line voltage and current at both ends of a 
line section of the distribution network and computing the 
power demand of the groups of consumers connected to the 
line, which are concentrated in the electricity poles. A line 
section consists, typically, in the wire segment located 
between two line transformers. 

2.  SYSTEM MODEL 

The system model considered in this work involves an 
electrical line section model and a consumer demand profile 
model that are specified in the following subsections. 

2.1. Line section model 

The model illustrated in the Fig. 1 represents basically a 
line section consisting of an electrical conductor with total 
electrical resistance R. The demand of the k-th consumer 
cluster connected to the line is represented by a current 
source whose short-term value is given by . The resistance 
between the reference edge of the line section and the tap 
connecting to the k-th consumer cluster is defined as 

 (1) 

where  represents the ohmic resistance of each one of the 
K subsections of the line, and   is the resistance 
ratio representing the ratio between the resistance from the 
reference edge until the considered cluster and the total 
resistance of the line section. 
 



 

 

Fig. 1.  Line section model. 

We assume that voltages and currents at the edges of the 
line section are known by direct measurement. The voltage 
and current of the reference edge (point A) are denoted by 

 and  respectively, while the voltage and the current at 
the other edge (point B) are represented by  and .  

Dictated by the Kirchhoff’s Current Law (KCL), the 
total current entering in the line section has the same 
magnitude of the total consumer demand, that is 

 (2) 

Clearly, if only the voltages and currents at the edges of 
the line are known, for , the exact value of the current 
demand of each line tap is indeterminate. 

2.2. Short-term demand statistical model 
Most of the domestic loads are connected and 

disconnected from the power line abruptly as in the case of 
illumination devices and electrical appliances. Therefore, the 
resultant instantaneous electricity demand has a switched 
profile by nature. Based on this fact, we assume that the 
short-term current demand of a consumer varies essentially 
in the form of current steps whose amplitude and switching 
timing are random variables. 

Unfortunately, in the literature we could find only long-
term models for consumer electricity demand with time 
resolution of hours or at best of minutes, reflecting only an 
average profile. Consequently, this work will adopt a simple 
heuristic short-term model to the electrical current demand 
of a single domestic consumer. Although additional 
refinement can be done to improve it, the proposed model is 
adequate to simulate and verify the proposed concept. 

We assume that there are two basic consumer demand 
components that should be combined: periodic and non-
periodic. Periodic demand is caused by loads that are 
switched at quasi-regular intervals as in the case of 
refrigerators, electric boilers, etc. Non-periodic demand is 
generated by turning electrical loads on and off 
asynchronously. In addition, in each case, we consider the 
existence of an additive white Gaussian noise (AWGN) 
ingredient that characterizes the instantaneous demand 
fluctuations of the loads. Thus, the electrical current demand 
of each consumer can be represented by 

 (3) 

where  and  are, respectively, the total periodic and non-
periodic loads. 

Each cycle of the periodic demand components can be 
modeled as 

 (4) 

where  and  are vectors of nx Gaussian random 
variables  following the normal probability 
density function: 

 (5) 

The mean and the standard deviation vectors for  are 
given by  and  respectively. Similarly, for  
these vectors are given by  and . During the active 
interval the current demand of the i-th load is given by . 

In a similar manner to the previous case, each cycle of 
the non-periodic loads can be modeled as 

 (6) 

where  and  are vectors consisting of ny exponential 
random variables with probability density function given by  

 (7) 

and expected value vectors given by  and  
respectively. In this case, the current demand of i-th 
periodical load during the on-interval, offers a constant 
demand, . 
 Fig. 2 shows an example of the resultant demand profile 
for the proposed model, relative to the combination of two 
loads, being one periodic component with parameters 

,   and  and the other 
a non-periodic component with parameters , , 

 and . 

 

Fig. 2.  Demand profile due to the combination of a periodic load 
and a non-periodic load with the following parameters: ,  

, ; , ,  

. 

3.  SYSTEM ANALYSIS AND DESIGN 

We consider that the short-term voltages and currents at 
the edges of the line section of Fig. 1 are sampled regularly 
at a sufficient high rate  (e.g., at each power line cycle or 
so). Thus, the probability that two or more loads are 
switched in the same instant can be obtained by 
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 (8) 

where  is the k-th line tap switching average probability in 
any sample interval  given by 

 (9) 

As mentioned before, it is not possible to determine the 
exact value of the current demand of each line tap of the 
system by merely measuring the voltage and current signals 
of the line section edges. However, we can get an estimate 
by detecting the voltage and current variation signals of the 
line section edges and submitting them to a reasonably 
simple signal processing. 

3.1. Basic Demand Measuring Process 

Supposing that in a considered sample interval the 
current demand changes are due to a single consumer 
cluster, then the circuit illustrated in Fig. 3 is valid and, in 
this case, the cluster current variation is given by 

 (10) 

Furthermore, we can determine which cluster has caused 
the demand change, first writing that 

 (11) 

and, then determining the resistance ratio value from the tap 
that caused the current variation: 

 (12) 

 As we assume that the topology of the line section is 
identified, i.e., the resistance values  of the 
subsections are known, the estimate of the resistance ratio 

 uniquely identify the consumer cluster that caused the 
demand variation. 
 
 

 

Fig. 3.  Model for current demand variation in a single line tap. 

In a real environment, as result of the system noise, the 
values obtained are approximated. Based on the Detection 
Theory, if we assume that the process noise is Gaussian then 
the optimal detection is maximum likelihood detection 
[5][6]. This implies that we should choose the nearest valid 
mk of the obtained value in (6). 

The estimate for the current demand of each consumer 
cluster can be achieved by totalizing the demand changes, 
that is, for each cluster we can compute 

 (13) 

3.2. Advanced Demand Measuring Process 

The technique developed in the previous subsection is 
flawless while demand variations do not occur 
simultaneously in multiple taps.  However, in the event of 
multiple tap switching (MTS), if a process adjustment is not 
made, the accumulation process defined in (13) can be 
permanently disturbed. 

For consumer energy demand control purposes, we 
consider a catastrophic event when a negative demand step 
is lost permanently. The reason is that in this situation the 
consumer demand can become overestimated for a large 
period of time as illustrated by Fig. 4. Therefore, we assume 
that some amount of underestimate error in the demand 
measurement can be tolerated, but not overestimate errors. 
 

 

Fig. 4.  Example of demand overestimates: - catastrophic events at 
t1 = 220 min and t2 = 1092 min. 

Fortunately, MTS events can be detected. To examine 
this question more briefly, we consider a simplified model 
for the line section of the Fig. 1, assuming ideal voltage 
sources and equidistant line taps, i.e., . Taking 
these conditions into account, result that  
and . Thus, for this simplified model, we 
conclude that the source of each single tap demand change 
can be determined by 

 (14) 

If the demand change is due to a single tap, the result 
obtained from (14) should be an integer in the range [0, K]. 
However, in the case of MTS, the relationship in (10) is not 
valid anymore and the resultant value from (14) will be a 
real number in the range (-, ). Therefore, single and 
multiple tap switching can be distinguished by examining 
the result furnished by (14). To mitigate the incident noise, 
the output  can be compared with its nearest integer , 
where  represents the rounding function. A single tap 
event can be declared if the measured distance given by  

 (15) 

 
is smaller than an arbitrary threshold value , that is, if 

. 
As MTS is detectable, the next step is to control the 

accumulating process in (13) in order to avoid overestimates 
like those illustrated in Fig. 4. As tap switching probabilities 
are relatively small, i.e., , we consider that the vast 
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majority of the MTS events occur by the demand variation 
of only two taps,  and , as illustrated in Fig.5. 
 

 

Fig. 5.  Model for current demand variation in two line taps. 

In the event of MTS, there are four specific conditions 
related to the polarities of  and . Case 1 occurs when 
both are positive and if we consider that multiple taps are 
submitted to increasing demands, one good strategy in this 
case is do not add anything to the demand estimates , i.e, 

. In this way, overestimating the demand of wrong 
consumer clusters is avoided.  

Case 2 occurs when both  and  are negative. In 
this case, the worst situation is when one of the conflicting 
taps is responsible for almost the totality of the demand 
change. Thus, the most conservative decision in this case, is 
to deduct the demand variation integrally for all taps, i.e., 

.   
For the remaining cases, the polarities of the demand 

changes have opposite signs. In this case, this implies that 
the variations  and are also in opposite directions. 
An analysis in the circuit shown in Fig.5 reveals that 

 (16) 

Case 3 is for  and , resulting that 
 and . In this case, the most negative value 

for  occurs for the minimum value of , which 
corresponds to the situation in which the active taps are 
adjacent, that is, for . The same conclusion is 
also valid for the case 4, when  and . Thus, 
rewriting (16) for ,  and 

, we obtain that 

 (17) 

and 

 (18) 

For estimation purposes, the result in (17) can used to 
estimate  for case 3 and case 4 can be handled by (18). 

As we choose the detection process to avoid 
overestimates, the output of the accumulation process (13) is 
often underestimated and, eventually, reaches the zero 
baseline and an important question is how to handle these 
events. As current demand is non-negative, the basic action 
in those circumstances is to limit the value of  to zero. 
Moreover, in those occasions that the baseline is reached 
due to the detection of a single tap switching event, there is 
the opportunity to correct the baseline since the last 
occurrence of cases 2, 3 or 4 at time . This can be done by 

subtracting the negative output  provided by (13) for 
the entire time range , that is 

  (19) 

Summarizing the above discussion, we propose the 
following demand measuring process, computed at every 
sample interval: 

• Step 1: Verify if the line tap estimate  is close enough 
to a integer in the range , that is, using (15) 
compare  and . If , a MTS event was detected 
and go to step 2. Otherwise, an single tap event was 
recognized for the tap . Compute the demand variation 
estimate for this tap, , using (10) and set the 
estimates for all other taps to zero.  Jump to step 5. 

• Step 2: As a MTS event was detected, then compare the 
values of  and . If the polarities are opposite, go 
to step 3. Else, if both values are positive, do nothing 
and jump to step 4. Otherwise, if both values are 
negative, then deduct integrally the demand variation 
for all taps, computing (10) for  and store 
the current time . Jump to step 4. 

• Step 3: If  and , then compute 
 using (17) for each line tap. Otherwise, evaluate 

 by means of (18), for . In 
both cases, store the present time . 

• Step4: Compute the demand estimates  for all taps 
using (13). If any value results to be negative, set this 
value to zero. Wait for next time interval. 

• Step 5: Compute the demand estimates  for all taps 
using (13). If, for any k, the value results to be negative, 
correct the baseline for this line tap recalculating  via 
(19). Wait for the next time interval. 

4.  SIMULATION RESULTS 

All simulations conducted in this work employ the line 
section model and the short term demand models described 
in Section 2. Additional conditions include: a) equidistant 
line sections, i.e, ; b) ideal voltage sources, i.e., 

; and c) identical demand profile in all line 
taps. For the last condition, although the number and type of 
loads connected to the line taps could vary, the same arrange 
was used in all taps. The basic loads that can be combined 
and employed in the simulations are listed in Table 1. 

Table 1.  Basic load types used in simulations. 

Type Amplitude (A)  (min)  (min) 
Periodic 4  5 60 
Non-periodic, 
high current 

20  22 10 360 

Non-periodic, 
medium current 

10  30 720 

Non-periodic, 
long-lasting 

3  240 720 

Non-periodic, 
low current 1 

1  10 60 

Non-periodic, 
low current 2 

1  180 720 

∆vA = 0 ∆vB = 0 ∆ik1 

R1 R2 ∆iA ∆iB R3 

∆ik2



Fig. 6 illustrates the typical total current demand profile 
, resultant for a 50-tap line section, with each 

tap submitted to all the six different types of loads listed in 
Table 1. 
 

 

Fig. 6. Typical total current demand profile for a 50-tap line 
section. Each tap submitted to all the six load types of the Table 1. 

Fig. 7 illustrates the fundamental distinction between the 
basic and advanced demand measurement processes. Fig. 
7(a) shows how the first strategy fails to deal with a 
catastrophic event around t = 530 min, while Fig. 7(b) 
exhibits the capacity of the refined process in managing the 
situation successfully. 
  

 

Fig. 7.  (a) Basic demand measurement process failure dealing with 
a catastrophic event at t = 530 min.  (b) Advanced demand 
measurement process deals with the same event successfully. 

Fig. 8 illustrates how basic and advanced strategies deal 
with MTS events. Fig. 8(a) confirms that basic process is 
predisposed to overestimate the demand, while Fig. 8(b) 
shows that errors in the advanced process tend to 
underestimate it. 

Finally, Fig. 9 shows the performance of the advanced 
demand measurement process for an increasing number of 
line taps. The total load of each line tap consisted of the 
combination of all load types listed on Table 1. As expected, 
the measuring error increases with the number of line taps 
and decrease with the sample frequency.   

 

 

Fig. 8.  (a) Basic measurement process overestimates the demand.  
(b) Advanced measurement process underestimates the demand. 

 

Fig. 9.  Advanced demand measurement process error in function 
of the number of line taps, for two sample rates 10 Hz and 60 Hz.  

5.  CONCLUSIONS 

This work proposed a method that allows measuring the 
electric power demand of consumer clusters remotely, that is 
adequate to applications for controlling technical and non-
technical losses over the low-voltage distribution network.  

The method is based on the detection of the electrical 
current and voltage changes at both ends of a distribution 
line section, and then computing the demand of the clusters.  

The measuring process avoids overestimating the 
demand by detecting multiple tap switching (MTS) and 
taking corrective actions in the demand measurement 
accumulation process. 

Simulations performed show that if the incidence of 
MTS events is kept sufficiently low, either by increasing the 
sample rate or, in last instance, limiting the number of taps 
of the line section, then long-term demand measurement 
process can be accurate enough to be successfully employed 
in applications combating technical and non-technical losses 
in the electricity distribution network. 
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