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Abstract − This contribution describes the procedure of

evaluating the calibration of thermocouple by means of its

comparison with the thermocouple standard. In the process

of thermocouple calibration by means of comparison, the

resulting uncertainty specified by applying the generalized

procedure for evaluating the calibration of measuring

devices with continuous scale. The advantage of this method

of evaluation is the determination of uncertainties in the

whole range of the calibration. The conclusion of this paper

states the illustrated differencies between cases when

covariances are into account or are not.
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1.  INTRODUCTION

The best way for increasing the accuracy of measurement in

modern metrology is often the application of modern

mathematical-statistical method which until now has not

been sufficiently utilized for the evaluating the calibration of

instrument. This attitude is reasonable because current

technical solutions are so perfect, that their development

stagnates. For measuring instrument with continuous scale a

generalized procedure for evaluating the calibration

uncertainties and covariances has been developed by

Palenčár, Wimmer [1,2] and Kubáček [6]. In this paper

authors are presenting these procedures for evaluating

uncertainties of the calibration of a thermocouple (hereafter

TC only)  type S by means of comparison.

2.  CALIBRATION PROCEDURE

Calibration is carried out by comparison of the unit

under test TC type S against standard TC type S calibrated

in defined fixed points according to ITS-90 (Fig.2.1).

Thermoelectric voltage (emf) is measured by digital

voltmeter connected to PC through GPIB port for

simultaneous recording of values. As a source of heat is

used the horizontal pipe calibration furnace. Here the TC’s

measuring junction is placed and reference junction is

maintained at 0 °C in Dewar flask. Calibration is carried out

in the range from 0 °C to 1100 °C. In each calibration point

measurement is repeated ten times. Ambient temperature is

23 °C ± 1 °C. The calibration is represented as a curve fitted

to the measured values of the deviation E-Eref and generally

given as a function of temperature t.  This curve is

representing deviation function.

3.  METHODOLOGY

We consider the case, when number of calibration points

r is higher than number of unknown parameters p, r>p the

model is overdetermined. Calibration model should be

established using following relations (3.1)

1100
4

41100
3

31100
2

21100101100

200
4

4200
3

3200
2

220010200

100
4

4100
3

3100
2

210010100

tatatataaW

tatatataaW

tatatataaW

⋅+⋅+⋅+⋅+=

⋅+⋅+⋅+⋅+=

⋅+⋅+⋅+⋅+=

M

(3.1)

in matrix notation

TaW = (3.2)

where T is a matrix, which contains values, arithmetical

means of series of measurements in each calibration points

(3.3) measured by standard TC.

Fig. 2.1: Scheme of calibration
1- Calibration furnace, 2- Isothermal block, 3- Standard TC, 4- Unit

under test, 5- Dewar flask, 6- Reference junction of TC’s,

7- Voltmeters, 8- Computer with GPIB port
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Left side of the model (3.1) or (3.2), the observation vector

W is presenting the measurement model of unit under test

TC

Λ∆ KCEW += (3.4)

where E∆  is the vector of deviations from the reference

function (3.5). Reference function is given by IEC 584.2

standard (3.6)
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in product of ΛKC  fills every influences of measurement.

Vector of correction Λ  is given by
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where

IHδ E - correction linked to the reading of

voltmeter

RVδE - correction linked to the resolution

voltmeter

KδE - correction obtained from the

calibration of voltmeter

DδE - correction linked to the drift of

voltmeter

CKδE - correction linked to the

compensation cable

NδE - correction due to the

inhomogenity of the

thermocouple wires

R0δt - correction due to the deviation of

the ice bath temperature

Fδt - correction linked to the

nonuniformity of the temperature

profile

RFδt - error of reference function

and matrix KC  is the known matrix, usually its elements are

sensitivity coefficients.

Our aim is to get estimation for unknown parameters of

deviation function. This aim could be reached by using

least-square method. Uncertainties are taken into account as

well. We apply following expression iteratively because of

stochastic character of quantity t.
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Initial values of unknown parameters â  of deviation

function are determined by zero estimation. Then covariance

matrix of input quantities WU  is

T
KK CUCUU EW Λ∆

+=      (3.9)

where

EU
∆

- covariance matrix of the vector E∆  is diagonal

matrix, principal-diagonal elements present square of

uncertainties estimated by type A method
T

KK CUC
Λ

- product of these matrix gives diagonal

covariance matrix, principal-diagonal elements present

square of uncertainties estimated by type B method

Λ
U  - uncertainties of correction measurement by unit under

test TC are included in this covariance matrix

Covariance matrix âU  is represented by matrix of the

uncertainties of the estimates

( ) 11T
−−

= TUTU Wâ                                                     (3.10)

Deviation associated with the reference function is solved

by âTÊ =∆       (3.11)

uncertainty of the deviation can be achieved by application

of law of propagations of uncertainties

 T2
TUTu âE ⋅⋅=∆ (3.12)

Zero estimation of vector â  is biased (see Fig.4.1(a)). It is

caused by stochastic characters of the quantity t. Therefore

the model is nonlinear and requires a solution procedure. It

is linearized by application of Taylor series and higher

elements of estimated values are neglected. After

linearization left side of model vector W  will be

( )2S1K tCtDCEW δδΛ∆ +++=                                (3.13)

( )1100200100diag ddd K=D - is the known matrix,

obtained by application of expansion of Taylor series
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( )2S1 tCt δδ + - this part is valid for standard,

vector 1tδ - error given by standard

product 2S tC δ - which contains influence quantities

concerning a standard TC, same way as in experession (3.4)

for unit under test.

After linearization covariance matrix WU  has the form

( ) TT
SS

T
KK 21

DCUCUDCUCUU tEW tδδΛ∆ +++=

(3.15)

where

1t
Uδ  - covariance matrix of the vector 1tδ  is diagonal

matrix, principal-diagonal elements present square of

uncertainties estimated by type A method
T

SS 2
CUC tδ - product of this matrix is given by diagonal

covariance matrix, principal-diagonal elements present

square of uncertainties estimated by type B method

2tδ
U  -uncertainties of correction of measurements by

standard are included in this covariance matrix

Now in new iteration we consider the observation vector W

(3.13) and covariance matrix WU  (3.15) and we use formula

for estimation of parameters (3.8).

Numerically, in the most cases design matrix T is badly

scaled and its columns are nearly linearly dependent. For

this it is reasonable to transform quantities of t to interval

1  1 ≤≤− t  according to following relationship
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Feedback transformation is carried out by multiplicating the

row of vector tT determined by (3.16) and columns of vector

of estimated parameters â  and columns of âU  as first

multiplied from left side then right side.

From the viewpoint of the user relevant results are the

temperature values and their uncertainties. Temperature

value can be obtained by interpolation table which can be

edited from deviation function and its uncertainty is

determined by application of theorem for implicit function.
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we get it by adding up deviation function and reference

function, where variable E is representing the current

measured value of emf. Now consider function t=(h,a) is

defined from the implicit function. This function is

continous and we has the partial derivation
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Derivation (3.19) is presenting elements of vector h.

Standard uncertainty is then obtained from the (3.20)

relation

( ) hUh ˆ ⋅⋅= atu T2 (3.20)

4.  CONCLUSIONS

Procedure for evaluating the calibration of TC was applied

to demonstrate whether considering the covariances has an

impact on final result of standard uncertainty. For this

reason was carried out the evaluation twice.  The difference

is shown in Fig. 4.1(b).

 
(a)

As a conclusion we can claim that covariances had

significant effect on final result of a calibration.

(b)

Fig 4.1: Standard uncertainties of deviation

function: (a)  Difference between zero and third

estimation of parameters, (b) Standard uncertainties

derived from third estimation when consider covariance

and not
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