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Abstract  The paper deals with applications of 

cryptographic methods in design of secured versions of 

Distributed  Measurement Systems  (DMS). In the paper 

wide range of cryptographic  algorithms  is assessed and 

some of them are chosen and proposed as well suited to 

DMS specific requirements.  Some specialized low power, 

high speed, hardware solutions for cryptographic  

algorithms  are  also suggested in the paper.  Strong 

asymmetry of  computing power and memory capacity is 

taken into account in both software and hardware solutions. 
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1.  INTRODUCTION 

In many kinds of Distributed Measurement Systems 

(DMS) information security of the system is the crucial 

design problem. Additionally in many  instances of DMS, 

like sensor networks (SN), wireless sensor networks (WSN) 

and mobile DMS applications we deal with tiny autonomous 

nodes with very limited computational resources and 

extremely limited energy source. These constraints influence 

security solutions (algorithms, protocols, circuits) which can 

be used in such networks. 
 

Specific properties of DMS considered in the paper are 

the following: 
 

1.asymmetry of computational resources (for example 

computational power and memory capacity are very limited 

in tiny autonomous sensor nodes) 

 

2. small bandwidth of data transmission channels of the 

network 
 

3. energy constraints (typically we can obtain about 10-

50 W from the scavenger which produces supply voltage 

relying solely on ambient vibrations) 
 

4. use of unsecured channels (Internet or public 

telecommunication channels) 
 

  The four fundamental security services are the following:  

privacy, entity authentication message authentication and 

data integrity. 

Our aim is to propose security solutions (algorithms, 

protocols, circuits)  for these services which are well suited 

to above mentioned DMS specific requirements. 

  The security aspects of low power DMS networks with 

asymetric computational resources are a very active topic of 

research with far reaching applications (from environment 

monitoring, collecting microclimate data to several military 

applications like target tracking and detecting bio-weapons 

[7], [8], [11], [12]). Special attention in recent works is also 

payed to self-powered sensor networks. Emerging ultra low 

power DMS networks and massive measurements need 

special security methods, algorithms and circuits. 

 

2.  CIPHERING ALGORITHMS 

Most publications seem to preclude that Public Key 

Cryptography (PKC) is not feasible on severly resource 

constrained sensor nodes. In this paper we show that PKC 

simplifies the implementation of many typical security 

services and additonally reduces transmission power due to 

less protocol overhead.  

2.1. Rabin algorithm 

Rabin algorithm (or Rabin’s cipher) is a classical public 

key cipher with provable security. Rabin’s cipher security is 

based on the factorization problem of large numbers and is 

therefore similar to the security of RSA with the same size 

modulus. Rabin’s cipher has asymetric computational cost. 

The encryption operation is very simple and faster than 

decryption.  Its asymetry makes Rabin’s cipher an 

interesting choice for sensor networks in which nodes and 

base stations (servers) have different computational 

capabilities 

Key generation for Rabin public key encryption is the 

following. Every entity generates two large random (and 

distinct) primes p, q  and computes  qpn   . An ordered 

pair ),( qp  is a private key of the entity and qpn   is a 

public key. It is useful for simplicity of decryption algorithm 

to choose such primes p an q  that  )4(mod3p and 

)4(mod3q . 

Assume nZm  is a plain text message where nZ  is a 

ring of integers modulo n. The cryptogram is given as 



)(mod2 nmc   then to encrypt the message we need only 

one multiplication modulo n.  

 

Decryption algorithm is the following.  Assume we have 

a cryptogram )(mod2 nmc   and )4(mod3p , 

)4(mod3q . To calculate m from c we have to compute 4 

possible square roots 4321 ,,, mmmm  and choose from them 

an appropriate plain text message m.  Square roots from  the 

cryptogram  c can be computed in the following way: 

 

1. We find  integers Zba , , that 1 qbpa   (using for 

example the extended Euclid algorithm) and next we 

compute 4 numbers  

 

)(mod4/)1( pcr p ,       )(mod4/)1( qcs q , 

))(mod( nbqrapsx  ,  ))(mod( nbqrapsy  , 

 

2. Four square roots are the  following 

 

)(mod, nxx  , )(mod, nyy  . 

 

  The above decryption algorithm is complicated but it is 

implemented in servers (base stations) without severe 

constraints on resources.  

 

  The attack on the Rabin algorithm consists in recovering 

plaintext m from the corresponding cryptogram 

)(mod2 nmc  . This is precisely the problem of the square 

root modulo n which is computationally equivalent (it can 

be proved) to the problem of factoring n . Finally, security 

of the Rabin public-key encryption algorithm is based on 

hardness of factoring n. 

 

2.2. RSA algorithm with small encryption exponents 

The RSA cipher is widely used in computer networks 

but has relatively large computational complexity and can 

be used in DMS with resource constrained nodes only for 

rather small public keys for example 3, 5, 7.  

 

The RSA encryption scheme is the following. Each 

entity creates an RSA public key e and a corresponding 

private key d. A public key is a number )(nZe  , where 

)(nZ  is a ring of integers modulo  )(n  and )(n  is the 

Euler function value for the argument  qpn  , where p, q 

are diffrent primes . We assume that 1))(,( neGCD   i.e. 

1))1)(1(,(  qpeGCD . The private key is a number  

)(nZd  , which is an inverse of  )(nZe   in the ring 

)(nZ . The plain text messages are elements of the ring nZ . 

The cryptogram is given as )(modnmc e .  The plain 

text message can be obtained from the cryptogram c and the 

private key d  by the formula )(modncm d . 

 

The RSA cipher with small exponents (small ciphering 

keys e) is an interesting choice because we have only one 

solution nZm  of  the equation )(modnmc e  (if  

1))1)(1(,(  qpeGCD ) and decrypted message is unique.   

There are some known attacks on RSA with small 

ciphering public keys then such systems have to be carefully 

designed.  The attack on the RSA cipher with a small 

exponent e is for example possible if the same plain text 

message m is ciphered e times with the same public key e 

modulo Nnn ii  ,2  with 1),( ji nnGCD  for ji  . 

Rabin and RSA ciphers are block ciphers then using 

universal schemes (for example Rabin, Davies schemes see 

[1],[2]) we can in natural way design hash functions. 

 

 

3.  ENTITY AUTHENTICATION ALHORITMS 

Entity authentication (or entity identification) is one of 

four main security objectives. It seems that the best solution 

for discussed DMS are so called zero-knowledge 

identification algorithms (or protocols). In the sequel the 

idea of zero-knowledge proof  is shortly explained.  

3.1. Zero knowledge proof 

The simplest example which explains very well the idea 

of  the zero-knowledge proof is so called “zero-knowledge 

cave” (fig.1). We have two entities Prover and Verifier. 

Prover wants to prove that he has a key to the normally 

closed door in the zero-knowledge cave but he doesn’t want 

to show the key. Prover and Verifier play the following 

game. 

 

1.Prover goes to the cave door and Verifier stays outside. 

 

2. Verifier goes to the cave point denoted with arrows and 

ask Prover to come out from the left side (or right side with 

equal to ½ probability). 

 

If  Prover goes from the left side (or respectively from the 

right side) it suggests that Prover has the key which opens 

the internal cave door. If the verifier order is not fulfilled 

correctly the protocol is stopped because  Prover cheats. He 

has no key to the door. The above protocol is repeated t  

times. Probability of successful cheating by a Prover without 

the key is equal to t)2/1( .                      

                     
Fig.1 Zero-knowledge cave,  P  is  a Prover, V   is a Verifier 

 

P, V 

door 



3.2. Fiat-Shamir protocol 

The Fiat–Shamir protocol is a zero-knowledge proof 

used to entity authentication.  The protocol is well suited to 

considered DMS networks. Basic version of the Fiat-Shamir 

identification (entity authentication) algorithm is the 

following. 

 

A trusted center T selects and publishes an RSA like 

modulus qpn   (where p, q are diffrent primes) and 

keeps prime p and q secret. Each prover P selects  a secret 

number nZs  coprime to n,  computes  )(mod2 nsv   

and registers v as its public key. 

 

Assume P (a prover) proves knowledge of s to V (a 

verifier). P does it in t executions of a 3-pass protocol. 

 

1.P chooses a random number nZr  and sends to V a 

number )(mod2 nrx   (r is so called “witness”). 

 

2. V sends to P a random bit }1,0{e (e is so called 

“challenge”). 

 

3. P sends to V a number )(modnsry e (y is so called  

“response”) 

 

The verifier V  rejects the proof  if  )(mod2 nvxy e . 

Probability of successful cheating of  the prover P (if he 

doesn’t know a secret number s) is even to 
t)2/1(  where  t 

is a number of protocol executions. 
 

For hardware implementation of the above algorithm we 

need only a multiplier and a random bit generator. 

 

Zero-knowledge protocols can be also used in message 

authentication alhoritms (digital signatures).  

 

4.  DOCUMENT AUTHENTICATION ALHORITMS 

4.1. Digital signatures based on Fiat-Shamir protocol 

Assume we have Fiat-Shamir protocol which generates 

sequences: witness  challenge   response. If 

),...,,( 21 txxxx   is a sequence of random numbers which 

are squares of random ni Zr   ( ir  is a witness) and 

)(),...,,( 21 mheeee t  , where h is a given hash function, 

nZm  is a signed document and n
teeee }1,0{),...,,( 21   is 

a sequence of challenges.  The signer knows a secret 

nZs , he publishes )(mod2 nsv   and computes the 

correct response ni Zy   for every ni Zr   and ni Ze  . 

The signature of the document nZm  is an ordered pair: 

 

 ),...,,(),,...,,(),( 2121 tt yyyxxxyx  . 

Someone who knows a public key )(mod2 nsv   of  the 

signer can verify the signature ),( yx veryfying every 

coordinate exactly like in the Fiat-Shamir protocol.  

5.  SPECIALIZED CRYPTOGRAPHIC CIRCUITS 

5.1. Serial bit  multiplication circuit 

A proposed multiplication circuit is shown in the fig. 2. 

The circuit is a serial data word processing multiplier which 

minimalizes number of gates and multiplies two k bit 

numbers in 2k clock cycles. All registers used in the system 

are shift registers. Proposed multiplication circuit was 

simulated in VHDL and tested. Obtained results allow to 

asses power consumption and prove that the multiplier 

works correctly. 

5.2. Circuit for reduction modulo p based on Barrett’s  

algorithm 

Assume Np , 2p , 3,  bNb  and  1log  pk b . 

The Barrett’s algorithm (Barrett reduction) finds the value 

)(mod pz , for a given }1,...,1,0{ 2  kbz  and a modulus p. 

The  Barrett algorithm does not exploit any special form of 

the modulus p.  

There is a number }0{Nq  that we have rpqz  , 

where }0{Nr  and pr 0   is a remainder. It is easy 

to verify that   pzq /  then   rppzz  / .  Define  an 

algorithm constant   pb k /2  which can be written with a 

)1( k bit word.  The Barrett’s algorithm is the following. 

 

 

 

 

Fig. 2. Serial multiplication circuit,  R1, R2, R3 are shift registers. 
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_____________________________________________ 

 

Barrett’s algorithm 

_____________________________________________ 

Input Data: 2,  pNp , 3,  bNb ,  

 1log  pk b
,  1,0 2kbz  and  pb k /2  

 

Output Data :  )(mod pz  

_____________________________________________ 

1.     11 //:ˆ   kk bbzq    

2.   )1(modˆ)1(mod:  kbpqkbzr  

3.  if  0r  then  
1:  kbrr  

4. while  pr   do prr :  

    return(r) 

_____________________________________________ 

 

Fig. 3. The Barrett’s algorithm. 

 

 

The Barrett’s algorithm (fig.3) computes the value )(mod pz  

with 2 multiplications by a constant and 3 

additions/subtractions. The divisions  required in the 

algorithm are simple shifts of  the base b representations.  A 

natural choice for the base is a power of  2. Integers p and z 

are large in cryptographic applications (with 100-300 

decimal digits). Steps 3 and 4 in the algorithm are correction 

steps. Only one correction is possible in the step # 3 and two 

corrections in the step # 4. 

 

Fact (correctness of the Barrett algorithm)  

If 2,  pNp , 3,  bNb ,  1log  p
b

k ,  pb k /2 , 

 1,0 2kbz  then  the Barrett algorithm is correct i.e. 

finds  )(mod pz . 

Proof.  Proof of this fact starts from a simple equality 
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Next we prove that   11 //:ˆ   kk bbzq   is a good 

approximation of the quotient  pzq / . The full proof  that 

the Barrett’s algorithm is correct is given in  [1] and [6]. ■ 

 

In the paper the Barrett algorithm is mapped to a systolic 

array shown in the fig. 4.  Proposed systolic structure 

computes the value )(mod pz  in 27k  clock cycles. The 

rectangular clock signal denoted as CLK’ is k times slower 

than CLK. Every block of the circuit corresponds to one step 

of the Barrett algorithm.  Decision blocks # 1 (step 3) and 

decision block number 2 (step 4) are shown  in the fig. 5  

and 6 respectively. The circuit can be easily modified  to 

compute values )(mod2 pa  and )(modpba  . The proposed 

reduction modulo p circuit was simulated in VHDL and 

tested. Obtained results will be discussed in the full paper. 

In VHDL simulation we assume the base 4b . 

Multiplication with this base is equivalent to common 

binary multiplication then we can use a typical binary 

multiplier at two first levels of the systolic array.  

 

     Multiplication modulo p can be also implemented using  

well known Montgomery reduction and multiplication 

algorithms but proposed circuits based on the Barrett 

algorithm seems to be more flexible and universal.  Both 

algorithms show similar execution times and similar area on 

chip. 

 

6.  CONCLUSIONS 

1. We have proposed in the paper algorithms and 

specialized cryptographic circuits which can be used in low 

power, secured Distributed Measurement Systems with 

asymmetric resources like for example sensor networks.  

Chosen cryptographic algorithms for the host with 

limited resources are secure but as simple as possible from 

computational point of view.  Distributed Measurement 

Systems based on public key cryptography minimalize key 

distribution and key management problems. 

 

2. We have showed, that it is possible to implement all 

crucial kinds of cryptographic algorithms (for privacy, entity 

authentication, message authentication, data integrity and 

random bit generation) with two simple circuits (building 

blocks) with bit serial word processing: multiplier and 

systolic circuit for the Barrett algorithm . 

 

3. In our assessment we have obtained a good balance 

between high-speed and low-power capabilities of proposed 

solutions. 
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Fig. 4 Implementation of the Barrett’s algorithm. The  

 systolic circuit computes )(mod pz . 

 

 
 

Fig. 5 Decision block # 1 conditionally  adds 1kb  to the input 

value r  if 0r  . 

 

 

 

 

 

 

 
 

Fig. 6 Decision block # 2 subtracts p from the input value i.e. adds 

–p  (two’s complement of p) to the input value r if pr   . 
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