
XIX IMEKO World Congress 
Fundamental and Applied Metrology 

September 6−11, 2009, Lisbon, Portugal 
 

A LEAST SQUARES PROBLEM IN GAMMA RAY TRANSMISSION 
TOMOGRAPHY  

 
Carlos C. Dantas1 ,  Bruna G. M. Araújo1, Valdemir A. dos Santos2,  

Christine L. L. Finkler2, Eric F. de Oliveira3, Silvio B. Melo3, M. Graça dos Santos3  
 

1 Departamento de Energia Nuclear DEN - Universidade Federal de Pernambuco UFPE 
Av. Profesor Luiz Freire 1000, CDU; 50740-540 Recife – PE. ccd@ufpe.br  

 
2Departamento de Química - Universidade Católica de Pernambuco 

Rua do Príncipe 526, Boa Vista, 50050-410, Recife – PE. vas@unicap.br 
 

3 Centro de Informática -Universidade Federal de Pernambuco  
Recife – PE.  sbm@cin.br 

 
 

Abstract − The results in single beam gamma     
transmission tomography are presented by an image 
processing based on the Algebraic Reconstruction 
Technique - ART.  The mathematical reconstruction was 
carried out by Bezier triangles with Bernstein polynomials, 
and also by spline functions, and as a matter of comparison 
the Filtered Backprojection - FBP  method was used. The 
image processing reconstructs the FCC (fluidized catalytic 
cracking) catalyst density distribution in an experimental 
riser. Typical problems are characterized as reconstruction 
models involve the inverse problem, basis function and 
solution of linear system of equations. A least squares 
estimator is required for the numerical solution, the model 
parameters are evaluated, and a comparison with literature 
values is carried out.  

Keywords: Mathematical reconstruction, Catalyst 
density, Single beam tomography. 

 

1.  INTRODUCTION 

    Computed Tomography in medical application is a 
quite well established method and from it industrial 
tomography has imported important developments like new 
scintillation detector types and shapes and computational 
algorithms. In comparison, in industrial tomography does 
not exist an attenuation coefficient database, nor is 
tomographic equipment commercially available, but on the 
other hand in several applications, it has a huge stain tube to 
penetrate that absorbs much of the whole radiation intensity 
and brings lots of noise to the detection and transmission 
measurements. Practically each research group develops its 
own tomographic systems so a broad variety of geometry 
arrangements involving parameter configurations can be 
found, as an example, spatial resolution of system is mainly 
limited by the size of the source and the detector elements, 
from an arc with 64 detectors, and even more sophisticated 

arrangement with an arc of 360 detectors, are also described, 
along with single beam tomography and its parameters as 
discussed by S. B. Melo et al [1]. Though gamma 
tomography proved to be highly successful for this 
application the remaining problems to be solved in the 
future are the improvement of spatial resolution and an 
increase of accuracy in the reconstructed absolute mass 
attenuation coefficient values which may be achieved by 
iterative image reconstruction algorithms. 

    Several models to describe gamma transmission 
measurements are used to uncertainty evaluation. The tube 
wall effects are estimated in many experimental set ups,  and 
their strong influence requires a model that takes into 
account the geometry of the tube (for instance [2]). Then 
tube thickness d was modelled as a function d = f (Re, R) of 
the external and internal radii. The equation form that relates 
intensity to attenuation coefficient, used for experimental 
measurement calculation, is thought also as a being a 
possible source of error as given by C. C. Dantas et al [3].             
Certainly it should be included a literature much poor in 
physical and mathematical fundaments as well structured 
subjects in literature reviews and books, are not easy to find 
on industrial gamma tomography. In order to fill the gap, a 
recent IAEA report, 2008, [4], should be mentioned that is 
surely a significant contribution. 
    The Filtered Back Projection (FBP) the well-known 
analytical method, is implemented in Matlab software using 
fast Fourier and the Radon transformation. For comparison 
it is used several times in this work, but in general industrial 
applications FBP is not adequate, and ART algorithms 
whose characteristics (are also described in [4]), were 
developed in order to carry out mathematical reconstruction. 
Several alternatives and refinements of the ART are 
considered, in this work the focus is on the system of linear 
equations formulated by computational algorithm and the 
least squares solution.  



    An important part of CT that needs particular attention is 
the estimation of error in the reconstructed image. The total 
error combines noise measurements and reconstruction 
algorithm errors and is therefore hard to estimate without 
Monte Carlo simulations. However, new techniques such as 
boot-strap techniques allow estimating error without 
numerous simulations. This technique can also be used to 
optimize the design of a CT system (as it is given in [4]). 
 

2. EXPERIMENTAL AND METHODS  

2.1. Experimental Setup  
    A tomographic system of single source–detector pair with 
stainless steel tubes of 0.154 m internal diameter follows the 
geometry for riser irradiation. A 137Cs radioactive source 
(3.7.108 Bq) and NaI(Tl) scintillation detector of (51x 51). 
10-3 m crystal size coupled to a multichannel analyzer and 
Genie-software from Camberra, were installed. 
    Source and detector collimators of cylindrical aperture of  
2. 10-3 m, 5.5.10-3 m, 10.10-3 m and 20.10-3 m were used. 
The gamma ray transmission measurements were carried out 
by the 0.662 MeV photopeak. Nominally the gamma 
detection system has a time constant of 0.5 microsecond 
pulse pair resolution, nevertheless at gamma intensity 
measurements on the hundred kcps interval, certainly 
perturbation will occurs.  In the range of 2 to 50 kcps 
spectrum broadening and peak shifting are kept under 
control and the linear scale of the output signal works 
properly.  
    The transmission measurement by scanning is taken along 
the x-axis in a coordinate system where the origin coincides 
with geometrical riser center. To scan the riser and generate 
the gamma transmission measurements matrix, A 
experimental configuration given by M. Azzi, P. Tulier, J.R. 
Bernard, L. Garnero [5], is adopted in this work.   
 

2.2 Mathematical Reconstruction 
    In transmition tomography, beams of gamma radiation are 
passed through the equipment or section of a tube being 
scanned from various positions and at various angles. Each 
beam is detected on the equipment opposite side from the 
beam source, and the measured intensity I is compared to 
the incident intensity I0. If the measured attenuation of the 
object g, is defined as g = ln (I0/I), then g is given by the 
linear transformation: 

               ∫=
L

dl)y,x(g μ                     (1) 

where μ(x, y) is the linear attenuation coefficient of the 
object at the point (x, y) and L is the gamma ray path length.  
    To reconstruct an image and produce a graphical 
representation of the distribution of the process parameters it 
is necessary to limit the spatial resolution and define a 
function μ(x, y). This is an array of pixels in which each the 
linear attenuation coefficient is assumed to be constant. The 
ray sum for each ray j is then expressed by the following 
summation: 
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where wij is the contribution to ray sum j from pixel i, μi is 
the attenuation coefficient of the pixel i and N is the number 
of pixels. The terms wij constitute the elements of the 
weight matrix W. According to the defined μ(x, y) function   
the number of measurements can be higher, that is, for r 
measurements j = 1, … , r and i = 1, … , n  coefficients, the 
linear system of equations  

           pW =μ                                (3) 

Will have a rectangular weight matrix with r > n. The 
solution of the least squares problem, to find the vector of 
coefficients μ, will minimize the norm of the residuals via 
normal equations. Such a solution is unique if W has a full 
rank.  
      In industrial tomography the number of measurements 
and the number of angles to scan the flow in a tube are 
limited by temporal resolution requirements. The density 
distribution function )y,x(ρ is defined M. Azzi, P. Tulier, 
J.R. Bernard, L. Garnero [5], in a “natural pixel 
decomposition” and due to the choice of the basis function, 
the corresponding to W matrix in (3), would be a singular 
matrix. In this case the least squares method has to 
implement a pseudo inverse of W, and the two main 
algorithms to search the solution are: QR factorization and 
singular value decomposition SDV, as it is given by L. N. 
Trefethen, D. Bau III [6] .    
    Image processing takes experimental data to define the 
density function )y,x(ρ distribution over a tube cross 
section that is the basis function in a given vectorial space. 
The function distribution is formulated as a system of 
equations whose solution is an inverse problem that can 
require a least squares method. The non-parametric Bézier 
triangle is a patch of a polynomial surface, in which each 
variable takes barycentric coordinates with respect to a 
given triangle in the domain. These barycentric coordinates 
are arguments for the Bernstein basis, which become 
weights for the weighted average of the density values 
associated with the intersections of the gamma rays. More 
precisely, it can be written: 
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D(u) is the proposed density function, where u = (u, v, w), 
with u + v + w = 1 the barycentric coordinates of the point 
for which the density value is required, i is a triple-index-
value ijk, used to identify each intersection point and its 
density value, bi. In the formula, |i| = n means that i + j + k 
= n. 

2.3 Least Squares Problem 
    Here it is proposed to estimate the control densities 
through an application of the least squares method to the 
function defined in the Eq. (4). We suggest that the average 



of the control densities along a gamma ray trajectory is a 
good estimate for the actual density value from the 
experiments. It is not difficult to realize that the bigger the 
number of trajectories, the better the estimation. In 
barycentric coordinates, the points in a given gamma ray 
trajectory can be characterized as those in which one of the 
coordinates is a fixed positive number, less than or equal to 
1. According to our choices for the triangle configuration, 
one such number is always of the type i/(m - 1) for some i in 
{0, 1, ..., m - 1}, where m is the number of trajectories in 
each edge of the triangle that circumscribes a riser’s section.   
     We may establish that δu,i, δv,j and δw,k are the acquired 
experimental density values associated with the trajectories 
in which u = i/(m - 1), v = j/(m - 1) and w = k/(m - 1), 
respectively. Let i/m be the triplet (i/(m - 1), j/(m - 1), k/(m - 
1)). In the trajectory where u = i0 /(m - 1) for some i0, we 
may say that the average density of the approximating 
function from (4) ideally should be equal to the 
corresponding acquired experimental density: 
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Substituting (1) in this equation: 
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After rearranging it:  
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    similarly, for the trajectories where v = j0/(m - 1) for 
some j0 in {0, 1, ..., m - 1} and w = k0/(m - 1) for some k0 in 
{0, 1, ..., m - 1}, we obtain: 
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And 

    ∑∑
1-mi

k,w
n
j

0nj
j 0

))m/i(B
k-m

1(b
==

= δ  (8) 

    These are the 3m rows of the overdetermined system Ax = 
b, where x contains the unknowns bi. The least squares 
problem is set by the normal equations: bA=AxA TT . The 
symmetric coefficient matrix of this linear system of 
equations possesses (n + 1)(n + 2)/2 rows and columns. 
Typically, when 

              
2
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              (9) 

the least squares problem will return a unique solution.  

 

3. RESULTS 

By approximate density over the tube crossection the 
discretization algorithm leads to a system of linear 
equations. As the number of measurements is constant an 
overdetermined system is formulated as in Equation (3).   
Trying to improve the reconstructed image quality, 
experiments with alternatives weight matrix formulation and 
simulations to optimize experimental conditions, also 
produces undertermined systems. In computational 
algorithm is included Matlab built in functions to calculate 
the LS solution. Some of these functions automatically 
apply algorithms as LU, QR for both over and 
underdetermined systems. The Experiments with the 
reconstruction of the catalyst density in the riser are 
presented (for instance in [1], [2] and [3]), by means of an 
ART developed algorithm and using FBP as a matter of 
comparison. In Fig. 1 the reconstruction of an aluminium 
half-moon is given using developed algorithm and a least 
squares method.     

 

     Fig. 1.  Reconstructed aluminium half-moon with a photo input 
data.  

The photo input data give a reference for errors 
evaluation in comparison with transmission measurements 
input data.  A calibration of input data for the experimental 
measurements is carried out (as given in [7]). The initial 
input data were photos image of high quality as a 600 ppi 
(pixels per inch) photo is qualified. The photos of aluminum 
pieces with form, dimension and density known are shown 
on 20 400 ppi. photo image, that occupies 4 megabytes of 
memory which is a relatively big matrix that can increase 
computational time. From such a big matrix input data is the 
reconstructed image shown in Fig. 2.   



     
   Fig. 2.  Reconstructed aluminium full-moon with a photo 
                       input data. 
 

Then, the matrix size was optimized keeping a quite high 
resolution 783 ppi  but having only 0.15 megabyte which 
allows rapid computation and plenty utilization of Matlab 
functions to image analysis procedure. With optimized 
matrix size the FBP reconstruction was carried out the 
image quality was evaluated by RMSE and relative values 
on a calibration interval. The optimized input data matrix 
can be seen in Fig 3, and reconstructed full-moon in Fig 4.   

 

 
    Fig. 3.  Original photo of aluminium full-moon.  
 

The image contrast seems to improve slightly from Fig 2 
to Fig 4, but in the data matrix a significant different image 
background is obtained. By means of the optimized input 
data having a well defined image background, original data 
photo in Fig 3 and the reconstructed image in Fig 4, were 
evaluated, by comparing RMSE values. That is the quality 
of imaging reconstruction was quantified and a (96 ± 2) % 
value is obtained.  
 
 

 
Fig. 4.  Reconstructed aluminium full-moon with  
               optimized input data. 
 
    The spatial distribution was estimated by positioning the 
piece inside steel tube, the experimental riser, and taken 
both center as coincident with the origin of coordinate 
system, then comparing input in Fig 3 and reconstructed 
image in Fig 4. The aluminium full-moon, given in Fig 3 
and Fig 4, is in both figures symmetrically placed as it can 
be observed. The aluminium piece has a 0.060 m diameter, 
measured with a digital ruler, as a calibration of the density 
distribution for image reconstruction, the following 
measurements of horizontal and vertical diameters were 
carried out on matrix data, by Matlab functions, and an 
uncertainty  of (0.060 ± 0.003) m was determined .   
    The photos of the aluminum pieces were taken inside 
experimental riser, in the tomographic equipment, the 
measurements of the full-moon dimension, symmetry and 
centralized position evaluations, can be observed in the 
reconstruction given in Fig 5.      
     The image reconstructions by the FBP method are given 
from Fig1 to Fig 5, that are experiments with photo input 
data of aluminium pieces. A number of 180 projections were 
used and the quality of the reconstruction was evaluated by 
means of RMSE values. To compare with FBP the 
reconstruction by means of an algebraic method was carried 
out. An algorithm of ART kind was developed in Matlab,   
and the solution of the linear system of equations as it is 
given in Equation 3 was analysed.  
    The used Matlab functions includes several known 
algorithms: lsqr, linsolve, backslash (\), LU, QR, and 
mldivide. And a routine was adapted to calculate the 
solutions by a regularization technique.  The algorithm 
performance for the solutions of the linear system of 
equations was evaluated by the number of projections and 
the quality of the reconstruction according to RMSE values.                   



 
   Fig. 5.  Image reconstruction shown dimension and 
               symmetry of the aluminium full-moon.   
         

In Fig. 6 is given an image reconstructed by the ART 
method, with the Matlab linsolve algorithm and using 32 
projections.  
 

 
    Fig. 6.  Simulated on the left side and reconstructed 
                   Image on the right side.   
 
    The generated large matrixes increases ill-conditioned 
problems and often exceed computational memory. In this 
case sparse matrix implementation helps and LS solution is 
carried out by means of the built in functions as x = A\b and 
the lsqr instruction. An evaluation of image reconstruction 
corruption due to a non-unique solution calculation is 
studied. Analysing the weighted matrix according to full 
rank, condition number and the obtained residuals; such 
analysis is compared with parameters estimate and each 
associated solution of the LS problem with a formulated 
singular weight matrix shows a better computational 
stability with a regularization technique.    
     In Fig 7 is given the algorithm evaluation in the ART 
reconstruction method. The Alg1 to Alg7 are denoting the 
lsqr, linsolve, backslash (\), LU, QR, mldivide and Tikhonov 
regularization, respectively.  

They are Matlab functions plus a Tikhonov regularization 
implementation.          

  
       Fig. 7.  The quality of reconstruction as a function of 
                    number of projections for several algorithms. 
  
    As the aim of algebraic algorithms is use few projections 
in opposition to FBP method, a very low number of 
projections were investigated. At 2 and 28 projections the 
performance were investigated in an undetermined system. 
The lsqr function - Alg1, shows a 70 percent reconstruction 
for 28 projections, and no significant improvement up to 50 
projections. In the undetermined system all other algorithms 
are of low performance that improves suddenly at 32 
projections, as expected, for a determined system with a 
square weight matrix. The algorithms show equivalent 
performance as the number of projections increase up to 50 
projections solving a overdetermined system.  In table 1, are 
listed the Euclidean L2 norm of  (Ax – b) for three conditions of 
the linear system of equations. 
   
       Table 1.  L2 (Ax – b) values for the algorithms    
 

Algorithm (m < n) (m = n )     (m > n) 

LSQR 0.397 0.016 0.001 

 linsolve 17.2 6.5e-04 0.002 

(\) 14.9 5.7e-05 0.002 

LU 146 1.6e-05 0.002 

Tikhonov 149 9.9e-05 0.002 

QR 190 4.7e-04 0.002 

mldivide 149 5.7e-06 0.002 

      
    The algorithms and conditions of the system of equations 
are for the A matrix (m, n) in Table 1, as it is formulated in 
the least squares problem which solutions are evaluated by 
the L2 norm of  (Ax – b).  Comparing the Table 1 and fig. 7 for 
the lsqr solution, as an example, this algorithm shows the best 
results for the A (m < n) case, and the worst for the two others.   



    All the tests are of ideal reconstruction carried out by the 
ART method algorithm. Experiments with noisy data are not 
at all satisfactory for any A (m < n) case and much poor 
reconstruction was in general obtained. For noisy data the 
approach given by Samuli Siltanen [8], to the inverse 
problem, as deblurring is to find a sharp photograph from 
blurry image proved to be quite adequate. A sequence of 
methods are proposed and Matlab routines are available, to 
investigate the solution of the matrix equation b = Ax + ε, 
with ε as a random vector. The experiments were carried out 
introducing several levels of noise in the image processing 
data and according to [8], restricted to white Gaussian noise. 
In Table 2. are given L2  values for the solutions at a noise 
level σ = 0.02 for one and two-dimensional deconvolution.   

     Table 2. The L2 (Ax – b) values at noise level σ = 0.02 

 Dimension (m < n) (m = n )     (m > n) 

    One 0.40 0.07 0.13 

   Two 0.55 0.07 0.32 

 
    Dimension of the constructed measurement matrix and 
the noise level σ =2  in Table 2, are provided by routines that 
use  the normal random randn-function with a defined level 
factor. The dimensional convolution takes the build in 
Matlab function convmtx for discrete vectors. Experiments 
with noise levels from σ = 0.001 to σ = 0.90 shown a tendency 
that follows the data trend in Table 2, for higher noise levels some 
blurry image data are unexpected results.    
    The non-unique solution problem required further 
experiments on the sparse matrix implementation exploring 
Matlab possibilities. Results are improved by computing the 
non-negative least-squares solution and by the non unique 
total least squares. Special structure of the weight matrix can 
be exploited for efficient cost function and first derivative 
computation, using total least squares. Based in a consistent 
theoretical and computational frame work, as described by 
(I. Markovskya and_S. Van Huffelb, [9]), the method also 
produces the most promising results. To show the results 
reconstructed image are evaluated by means of comparison 
with original data according to RMSE values.   
    

4. CONCLUSIONS 

The developed algorithm using a basis function and 
discretization procedure that generates an overdetermined 
system of equations whose solution is carried out by least 
squares method proved to be efficient. In case the 
experiment produces a singular weight matrix the algorithm 
with a regularization operator shows a better performance 
due to numerical stability. Implemented Tikhonov methods 
show improvement for experiments with noisy data. At a 

higher noise level the Regular Total Least Squares method 
might provide better results for the inverse problem as far 
the actual investigation is considered. Future experiments 
will include a wavelet basis that takes advantage of the 
density distribution allowing an optimized image 
reconstruction. A study of the image reconstruction models 
by means of Monte Carlo simulation in order to evaluate 
errors might be a road towards uncertainty estimation. 
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