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Abstract − This paper discusses the selection of 

appropriate uncertainty framework in metrology related to 
the class of problem to be solved. 
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1.  INTRODUCTION 

This paper is concerned with the need to ensure that an 
appropriate uncertainty framework is selected when 
determining the measurement uncertainty of a particular 
problem in metrology. The GUM uncertainty framework [1] 
is indubitably the most widely used method and thus its 
adequacy will always be tested against more elaborate 
methods. It will be attempted to establish some simple 
guidance rules based on the selection parameters. 

Although the theoretical grounds for the application of 
the mainstream GUM are well defined, they are often 
overlooked and will result in inadequate applications. On the 
other hand, situations exist where it is known that GUM 
provides accurate results despite the fact that not all 
requirements for its application are met. It would therefore 
be useful to have some knowledge on the factors that 
influence mostly the outcome and adequacy of GUM 
applications. This methodology requires proper validation 
tools and a Monte Carlo method (MCM) will generally be 
used for that purpose.  

Another important approach to the evaluation of 
measurement uncertainty is based on Bayesian methods. Its 
fundamentals will concisely be explained and the merits of 
its application will be discussed. 

The differences between approaches will be explored 
and a comparison between GUM, MCM and Bayesian 
methods will be drawn, based on examples of different 
classes of typical metrology problems. The objective of 
generic method selection guidelines will be attempted. 

2.  APPROACH 

Different approaches can be used to provide a best 
estimate of the measurand and the associated measurement 
uncertainty, and a coverage interval for the measurand for a 
prescribed coverage probability. 

This is the whole set of information that GUM 
uncertainty framework can provide. It operates with 

summary information derived from the probability density 
functions (PDFs) for the input quantities, such as best 
estimates of the input quantities and the associated standard 
uncertainties, and through a Taylor expansion of a 
functional relationship will provide the required parameters 
– best estimate and coverage interval – associated with the 
measurand.  

A Monte Carlo method (MCM) implements the 
propagation of distributions [2] by sampling from the PDFs 
for the input quantities to provide an output PDF for the 
measurand. From this PDF the statistics parameters 
associated with the measurand can readily be obtained. This 
latter distinction in comparison with the mainstream GUM, 
represents an important advantage as it will be shown later.  

Bayesian methods, on the other hand, can also 
incorporate a prior PDF for the measurand in its 
probabilistic formulation, accounting for previous 
knowledge, e.g., physical knowledge on the output quantity, 
which can be relevant when, for example, physical 
limitations to the outcome result are known. As will be 
illustrated with examples, this feature of the method can 
determine its selection as the best suitable approach for 
some classes of problem.  

Considering that all methods have a process based on 
two stages, called formulation stage and calculation stage, 
and that they share similar requirements on the information 
needed for the formulation stage (the mathematical model 
and the PDFs of the input variables), the main differences 
that can define its suitability to each metrological problem 
are necessarily connected with the calculation stage 
requirements. 

In this way, a main task is to identify the relevant 
characteristics of metrological problems and the constraints 
of the evaluation methods, taking this information as a basis 
to aggregate these metrological problems under similar 
conditions to allow a classification suitable to act as 
guidance to the metrologist. 

3.  DISCUSSION 

The selection of an appropriate methodology for the 
evaluation of measurement uncertainties is, in certain 
circumstances, preponderant for the correctness of that 
evaluation with respect to the physical reality it intends to 
represent [3]. 



The mathematical models used as the support of that 
representation may differ in the number of variables and its 
combinations, some of which are particularly common in 
metrology, such as ratio, power and exponential 
expressions, by themselves or in some sort of combination. 
They will all predictably introduce some degree of non 
linearity or asymmetry in the output quantity whose 
influence needs to be studied. 

However, the particular mathematical model will not 
define alone the best suited approach to its evaluation. 
Rather, the order of magnitude between uncertainties and 
the PDF associated with each of those input quantities will 
also have a very important role to play. 

Generically, it can be stated that the analytical approach 
is appropriate to validate other methods, and should be 
applied whenever possible. Its main shortcoming lies in the 
scope of its applicability which is limited, in practice, to 
simple models. Therefore, its application in real life 
experiments is almost never considered. 

The GUM uncertainty framework, on the other hand, is 
particularly suited to differentiable linear models, or with 
mild non linearity, symmetric input PDFs, and Central Limit 
Theorem conditions, or the level of approximation provided 
will be difficult to estimate.  

Finally, the methods based on numerical simulations 
have a broader application, even to strongly non linear 
models, provide more information due to access to the 
outcome PDF and can converge rapidly to near exact 
solutions. 

3.1 Ratios 

As a first example we can look into a fairly simple 
problem of determining the measurement uncertainty 
associated with the estimate of a volumetric flow rate, where 
the measurand Qv is given by 

 
t

hba
Qv ∆

= **
 (1) 

Variables a and b are the width and length of the 
weighing tank, respectively, with assigned rectangular 
PDFs, and h is the liquid height in the weighing tank, having 
a Gaussian PDF. Lets assume that a and b have both the 
same limits [0,3495 – 0,3505] m, whereas h has a mean 
value of 0,08 m and an associated standard deviation of the 
mean of 0,0023 m. The time interval taken to fill the 
weighing tank is represented by ∆t and this variable can be 
crucial to the shape of the output PDF and thus to the 
validity of the GUM approach.  

If one considers first that ∆t is well represented by a 
Gaussian PDF with mean = 6,0 s and σ = 0,6 s the resulting 
output has a Gaussian shape as expected and the validity of 
the GUM is apparently unquestionable (see Figure 1). The 
validity holds for better (lower) values of uncertainty 
(standard deviation). However, as σ increases, the output 
PDF will collapse into a very narrow strip around zero, as 
Figures 2 and 3 illustrate for values of σ = 1.05 and 
σ = 1.15, and the assumption of Gaussian shape for the 
output PDF will not hold. The coverage interval may be 
overestimated when applying GUM in these conditions. 
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Figure 1 – Output PDF for input ∆t with Gaussian PDF. 
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Figure 2 – Output PDF for input ∆t with Gaussian PDF. 
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Figure 3 – Output PDF for input ∆t with Gaussian PDF. 

Changing the shape and magnitude of this variable, e.g., 
considering that a rectangular PDF is instead assigned to it, 
will produce a much greater effect. In fact, for the same 
relative values of uncertainty, that is, with limits set by 



[5,4 – 6,6] s and [4,85 – 7,15] s, the resulting output PDF 
departs considerably from  a Gaussian distribution as 
Figures 4 and 5 show,  and the uncertainty evaluation 
associated with the corresponding volumetric flow rate, 
using GUM or a MCM (Figure 2) approach are likely to 
produce rather different results. A further increase in the 
uncertainty associated with t, up to 50 % of its mean value, 
say, will lead to an exponential shape of the output PDF 
(Figure 6).  
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Figure 4 – Output PDF for input t with uniform PDF. 
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Figure 5 – Output PDF for input t with uniform PDF. 

The uncomplicated nature of this example should not be 
a reason for a lesser impact. On the contrary, it is its broad 
range of applications, in areas such as chemical, volume and 
thermometry, that makes it a good example of how in a 
simple problem, things can easily go wrong. 

In this particular problem, the factors that seem to 
influence mostly the output PDF are the input PDF of the 
variable on the denominator and the relative value of its 
measurement uncertainty. For relative values of uncertainty, 
in the referred variable, smaller or equal to 5 %, even having 
a uniform PDF will not produce an output PDF much 
different than the assumed Gaussian PDF. 
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Figure 6 – Output PDF for input t with uniform PDF. 

In this context, and bearing in mind this example, one is 
confronted with the fact that a number of variables can 
influence the uncertainty evaluation, so that ideally criteria 
to support the decision of method selection should be 
established. 

3.2 Close to the physical limit 

To illustrate the concept behind the section title, an 
example concerning the determination of an analyte 
concentration in chemical metrology is used. It will be the 
basis for a discussion concerning the various approaches 
available to deal with such constraints [4].  

The problem is that it might not be possible, when using 
a conventional method for solving such a problem, to 
guarantee feasibility of the solution. For instance, an 
application of the GUM uncertainty framework [1] might 
provide 0.30 % as an estimate of a concentration and 0.25 % 
as the associated standard uncertainty. If the quantity 
concerned were characterized by a Gaussian distribution, the 
expanded uncertainty corresponding to a 95 % coverage 
probability would be 2 × 0.25 % = 0.50 %, and hence a 
95 % coverage interval for the concentration would be 
(0.30 ± 0.50) %. Since the part of this interval that is below 
0 % is infeasible, it is difficult to interpret this result in a 
meaningful way for an application. A correctly computed 
coverage interval would have no negative values and thus a 
lower limit equal or greater than 0 %. 

This prior knowledge of the feasible interval for the 
output quantity can prove valuable in many instances. 
Bayes’ theorem takes the form 

 )()|()|( ηηη gxlKxg =  (2) 

where g(η) is a prior PDF for Y, )|( ηxl  is the likelihood 

function for the data x, )|( xg η  is the posterior PDF for Y, 

and K constitutes a normalization factor. In words, the 
degree of belief for a given value η of the measurand Y, 
expressed as the posterior PDF for Y given data x, is 
proportional to (a) the likelihood that η will produce the 
observed data x, and (b) the degree of belief attributed to η 



before the observation, the so-called prior PDF for Y, 
expressed as g(η). 

The posterior PDF may be used to provide summary 
information about the measurand Y, such as its expectation 
(mean) E(Y) and variance V(Y), defined by 

 ( ) ,)(EE)(V,d)|()(E 2YYYxgY −== ∫ ηηη  (6) 

The prior distribution represents the information about 
the values η available before the measurement x was taken, 
while the posterior represents an aggregation of the prior 
information and that supplied by the data. In “data-rich” 
experiments, the information supplied by the data is much 
more comprehensive than the prior information, so that the 
posterior is essentially proportional to the likelihood. In 
other circumstances, the prior distribution can contain 
information that the data cannot supply. 

Figure 7 shows, for the case x = 0.1 and u(x) = 0.2, the 
solution PDFs provided by a Bayesian treatment and an 
application of MCM as a numerical implementation of the 
propagation of distributions. The height of the left-most bin 
is in fact greater than 20 rather than as shown. For purposes 
of illustration, the chosen scale was used. 
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Figure 7 – Solution PDFs obtained from a Bayesian treatment 
(continuous curve) and a Monte Carlo method (scaled frequency 
distribution) corresponding to an estimate x = 0.1 and associated 

standard uncertainty u(x) = 0.2. 

Finally, Figure 8 shows, and compares, for the case 
x = 0.1 and u(x) = 0.1, the results obtained from three of the 
approaches considered. The solution PDF provided by the 
GUM uncertainty framework is shown as the Gaussian 
distribution (thin continuous curve), that provided by the 
Bayesian treatment as the thicker curve, and that provided 
by the Monte Carlo method as a scaled frequency 
distribution. For each distribution the endpoints of the 
(shortest) 95 % coverage interval are shown, as broken, 
dotted and continuous vertical lines, respectively. 

Both the Bayesian approach to the problem and the use 
of a Monte Carlo method deliver solution PDFs that are 
feasible. Furthermore, unlike the GUM uncertainty 
framework, neither the Bayesian approach nor the Monte 

Carlo method make an assumption about x or u(x), e.g., that 
x is itself feasible. 
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Figure 8 – Comparison of solution PDFs provided by the GUM 
uncertainty framework (thin continuous curve), Bayesian approach 

(thick continuous curve) and a Monte Carlo method (scaled 
frequency distribution), for the case x = 0.1 and u(x) = 0.1. The 
(shortest) 95 % coverage intervals are also shown as broken and 

continuous vertical lines, respectively. 

The Bayesian approach and the Monte Carlo method 
treat the physical knowledge about the problem differently. 
In the Bayesian approach the knowledge is treated 
probabilistically. The prior PDF for real analyte 
concentration Y encapsulates the knowledge about Y 
independently of any measurement, and through the 
likelihood function a negative value of measured 
concentration may arise for a positive value of real analyte 
concentration with non-zero probability. In the use of a 
Monte Carlo method (and generally in the application of the 
propagation of distributions with the proposed functional 
model) the knowledge is treated functionally: real analyte 
concentration regarded as a quantity can never be negative, 
even though measured analyte concentration also regarded 
as a quantity can be positive or negative. 

The modelling part of the solution approach is generally 
a crucial stage. Although both functional and probabilistic 
modelling have roles to play in the determination of feasible 
solutions, the choice of model is paramount, and to this 
particular class of problems the Bayesian approach, 
apparently, has the edge. Looking into Figure 7 it is obvious 
why: the Monte Carlo model aggregates all the possible 
negative values into zero leading to a shorter distribution 
curve for the rest of values, whereas the Bayesian approach 
in its own formulation imposes the range of possible values 
for the measurand and thus provides a more "believable" 
distribution associated with it. 

Examples from dimensional metrology, e.g., surface 
texture profiles, could have also been used to demonstrate 
the relevance of incorporating prior knowledge into the 
model uncertainty framework. 

 
 



3.3 Implicit functions 

The example used to illustrate this class of problems is 
the calibration of a pressure balance (deadweight machine). 
The methodology applied is based on a general formulation 
[5] and the results are supported on experimental data [6]. 
The expression for the determination of the required 
pressure value is: 
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The variable M represents the total mass used and the 

corresponding ρw also applies to the total mass applied. The 
others variables apply to the effective area of the piston (A0), 
the distortion coefficient of the piston-cylinder (λ), the 
temperature coefficient (α) and mean temperature during the 
calibration test (T). It is relevant to point out that expression 
(3) has neglected others influencing terms such as the height 
difference and the piston angle to the vertical, and is 
therefore a simplification. 

It can be noted that the required pressure value term, p, 
appears in both sides of the equation, forcing the use of zero 
finding numerical scheme. Under the GUM uncertainty 
framework derivatives have to be calculated, for the 
sensivity coefficients, including the partial derivative of p in 
the implicit equation. It is advisable to use a compact matrix 
formulation as suggested [5] to determine the uncertainty 
associated with the pressure value p, 

 

 xx

T

x cVc=22 )( ycyu  (3) 

 
since it helps in the calculation stages, by allowing the 
covariances (Vx) and sensitivity coefficients (cx and cy) to be 
accounted for in a systematic formulation.  
 Even with the compact formulation the mathematics 
involved in the solution of this type of problems can become 
quite intricate. An obvious advantage of the Monte Carlo 
method (MCM) is precisely the simplification that its use 
can provide, and here is a good example. For the input data 
in Table 1 below, 

Table 1. Input data for the pressure balance problem 

Symbol Best 
Estimate 

Variation 
of limits 

Dist Units 

M 32,9000 ± 3,6×10-4 N [kg] 
A0 8,0661×10-5 ± 3,2×10-8 N [m2] 
λ 3,3×10-11 ± 7,0×10-13 N [Pa-1] 
g 9,8007 ± 1,0×10-5 N [m.s-2] 
α 4,6×10-5 ± 4,2×10-6 T [ºC-1] 
ρa 1,2 ± 2,0×10-2 T [kg/m3] 
ρw 7850,0 ± 5,0×10-1 T [kg/m3] 
T 30,0 ± 1,0 R [ºC] 

 
where the letters in the 4th column refers to distributions 
assigned to the input quantities, namely normal (N), 
triangular (T) and rectangular (R), the best estimate for the 
measurand is about 3,995 MPa. Using the GUM approach, 
the value for the standard uncertainty is about ± 1,6 kPa 

whereas the same quantity determined through the Monte 
Carlo method has a lower value of ± 0,92 kPa. This, 
however, is not the always the case, being perhaps more 
common the opposite situation where a GUM application 
underestimates the uncertainty evaluation. In this particular 
problem the non linearity and the ratio involved might 
explain the situation, bearing also in mind that the use of 
second order derivatives might have diminished the final 
result of the standard uncertainty. A better understanding of 
the reasons behind these differences would require further 
sensivity analysis, which is out of the scope of this paper. 

3.4 Iterative processes 

Some measurands are related to equilibrium states (e.g. 
thermodynamic) that are established under specific 
conditions for a set of measurands. In some cases, the 
complexity of the phenomena under study leads to the use of 
mathematical models based on iterative processes as the 
only way to achieve adequate solutions.   

A typical example is found in humidity related 
measurements, where the dew point temperature evaluation 
uses a reference two-pressure and two-temperature 
generator. In this case, the conditions are generated in a 
controlled chamber containing an air moisture sampling, 
being measured the pressure and the temperature of the 
chamber and of a saturator. The mathematical model that 
relates the measured quantities with the dew point 
temperature, Td, is given by: 

 ( ) ( ) ( ) ( ) η⋅⋅=
s

c
swssswsdwsdcws ,,

p

p
TpTpfTpTpf  (4) 

where, 

sp , sT  - saturator pressure and temperature; 

cp - Chamber pressure; 

( )Tpf ,ws  - Enhancement factor [7]; 

( )Tpws  - Saturation vapor pressure [7]; 

η – saturator eficciency. 

In this model, two of the input variables, ( )Tpf ,ws  and 

( )Tpws , are obtained using relations with a number of  

coefficients, given in [7], imposing a two-stage approach to 
the evaluation of uncertainties problem. 
 The iterative formula that gives the dew point is readily 
obtained from (4) 
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and a solution for the dew point temperature can then be 
found applying a Newton-Raphson method (6), provided a 

seed for the iterative process, 
0dT , a maximum number of 

iterations, n, and a numerical criterion 
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Two approaches can be recommended for this type of 
metrological problem: MCM or Bayesian Inference.  



In the first case, it is required to know the parameters of 
the input quantities PDFs (pressures and temperatures of the 
chamber and of the saturator), the numerical simulation is 
developed under an iterative process where the solution is 
tested every time a cycle of calculations ends, being stopped 
successfully if the numerical criterion is reached, or not 
successfully if the maximum number of iterations is 
performed without reaching the numerical criterion. A study 
using this approach is found in [8]. 
 Regarding the use of Bayesian inference, the general 
approach can be seen at [9], describing the main procedure 
of an inverse uncertainty evaluation approach, the so called 
inverse Monte Carlo (IMC) method. This technique is being 
applied in a study [10] concerned with the evaluation of 
measurement uncertainties in a two-pressure humidity 
generator. The preliminary results show that IMC provides a 
similar outcome in comparison with MCM, being the 
selection of the tolerance parameter a crucial factor in IMC. 

3.5 Final remarks 

 Summing up the studied cases, and taking into account 
more general classes of problem well known and widely 
published, permits the construction of the following Table, 

Table 2. Summary of model choice cases. 

Model GUM MCM Bayesian 
Linear  � � � 

Non linear � � � 
Ratio � � − 

Physical limit  � � 
Implicit � � − 
Iterative  � � 

 
where the inserted symbols refer to situations of adequate 
(�), conditional (�) and inadequate () use. In the present 
work, two of the cases where not studied using a Bayesian 
approach. 

4.  CONCLUSIONS 

The solution approaches considered are capable of 
treating functional or probabilistic models to the degree of 
approximation typically required in practice. However, the 
modelling itself constitutes a critical stage. The choice of 
model dictates the solution. 

Examples have shown that, depending on the 
mathematical model, the value and assigned distributions for 

each input variable will influence the validity of the 
approach taken to the evaluation of the measurement 
uncertainty.  

This paper was set out to establish simple, general rules, 
to decide upon the correct choice of method to perform 
uncertainty calculations. 
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