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Abstract — This paper discusses the selection ofsummary information derived from the probabilityndity
appropriate uncertainty framework in metrology tedato functions (PDFs) for the input quantities, such leest
the class of problem to be solved. estimates of the input quantities and the assatistiEndard

uncertainties, and through a Taylor expansion of a

K eywords: solution method, measurement uncertainty, functional relationship will provide the requiredrameters

metrology — best estimate and coverage interval — assocuitdthe
measurand.
1. INTRODUCTION A Monte Carlo method (MCM) implements the

propagation of distributions [2] by sampling frolretPDFs
This paper is concerned with the need to ensureaima for the input quantities to provide an output PR the
appropriate uncertainty framework is selected whefneasurand. From this PDF the statistics parameters
determining the measurement uncertainty of a paatic associated with the measurand can readily be a@ataifhis
problem in metrology. The GUM uncertainty framewgtk latter distinction in comparison with the mainstire&UM,
is indubitably the most widely used method and thgs represents an important advantage as it will bevaHater.
adequacy will always be tested against more elabora Bayesian methods, on the other hand, can also
methods. It will be attempted to establish somepkm incorporate a prior PDF for the measurand in its
guidance rules based on the selection parameters. probabilistic ~ formulation, —accounting for  previous
Although the theoretical grounds for the applicatif ~ knowledge, e.g., physical knowledge on the outpatntjty,
the mainstream GUM are well defined, they are oftevhich can be relevant when, for example, physical
overlooked and will result in inadequate appiimmn the limitations to the outcome result are known. Aslviié
other hand, situations exist where it is known t&aiM illustrated with examples, this feature of the noethcan
provides accurate results despite the fact that albt determine its selection as the best suitable apprdar
requirements for its application are met. It wothidrefore  SOme classes of problem.
be useful to have some knowledge on the factor$ tha Considering that all methods have a process based o
influence mostly the outcome and adequacy of GUMWO stages, called formulation stage and calcutasitage,
applications. This methodology requires proper daglbn and that they share similar requirements on thermnétion
tools and a Monte Carlo method (MCM) will generatilg needed for the formulation stage (the mathemativadlel
used for that purpose. and the PDFs of the input variables), the mainediffices
Another important approach to the evaluation Oﬁhat can define its SUltablllty to each metrO|OgipH)b|em
measurement uncertainty is based on Bayesian methed are .necessar”y connected with the calculation estag
fundamentals will concisely be explained and theitnef requirements.
its application will be discussed. In this way, a main task is to identify the relevan
The differences between approaches will be exploregharacteristics of metrological problems and thestints
and a comparison between GUM, MCM and Bayesia®f the evaluation methods, taking this informatésa basis
methods will be drawn, based on examples of differe 0 aggregate these metrological problems under lagimi
classes of typical metrology problems. The objectif conditions to allow a classification suitable tot aas
generic method selection guidelines will be attedpt guidance to the metrologist.

2. APPROACH 3. DISCUSSION

Different approaches can be used to provide a best The selection of an appropriate methodology for the
estimate of the measurand and the associated reeasnor  €valuation of measurement uncertainties is, in agert
uncertainty, and a coverage interval for the memglifor a ~ circumstances, preponderant for the correctnesshat
prescribed coverage probability. evaluation with respect to the physical realityntiends to

This is the whole set of information that GUM represent[3].
uncertainty framework can provide. It operates with
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The mathematical models used as the support of that
representation may differ in the number of varialded its
combinations, some of which are particularly comnion
metrology, such as ratio, power and exponential ,u0.
expressions, by themselves or in some sort of coatibn.
They will all predictably introduce some degree rafn
linearity or asymmetry in the output quantity whose 500
influence needs to be studied. &

However, the particular mathematical model will not
define alone the best suited approach to its etialua
Rather, the order of magnitude between uncertairdied
the PDF associated with each of those input questiill 500
also have a very important role to play.

Generically, it can be stated that the analytiggdraach
is appropriate to validate other methods, and shdd
applied whenever possible. Its main shortcoming iiiethe Measurand [ms] x 10
scope of its applicability which is limited, in mtice, to
simple models. Therefore, its application in reéie | Figure 1 — Output PDF for inpdtt with Gaussian PDF.
experiments is almost never considered.

The GUM uncertainty framework, on the other hamsd, i
particularly suited to differentiable linear modets with
mild non linearity, symmetric input PDFs, and Cahtrimit
Theorem conditions, or the level of approximatioovided
will be difficult to estimate. t“‘jg“:'_d:fz“gg”s

Finally, the methods based on numerical simulations 1000} i .
have a broader application, even to strongly nowar
models, provide more information due to accessh® t &
outcome PDF and can converge rapidly to near exact
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3.1 Ratios

As a first example we can look into a fairly simple
problem of determining the measurement uncertainty 0 ‘ ‘ ‘ ‘
associated with the estimate of a volumetric flatey where ot oz s a5 6T 8

. - Measurand [m°/s] x 10
the measuran@, is given by
Q a*b*h ) Figure 2 — Output PDF for inpit with Gaussian PDF.
' At

1400

Variables a and b are the width and length of the
weighing tank, respectively, with assigned rectdaigu
PDFs, and is the liquid height in the weighing tank, having

1200

a Gaussian PDF. Lets assume thandb have both the 10001 ormal et |
same limits [0,3495 — 0,3505] m, wherdashas a mean

value of 0,08 m and an associated standard dewiafithe 800| 1
mean of 0,0023 m. The time interval taken to filet 3

weighing tank is represented By and this variable can be 6001 ]

crucial to the shape of the output PDF and thught®
validity of the GUM approach.

If one considers first thatlt is well represented by a
Gaussian PDF with mean = 6,0 s and 0,6 s the resulting
output has a Gaussian shape as expected and itieyval 0
the GUM is apparently unquestionable (see FigureThg
validity holds for better (lower) values of uncénty
(standard deviation). However, @sincreases, the output
PDF will collapse into a very narrow strip arourgf@, as
Figures 2 and 3 illustrate for values af=1.05 and
o=1.15, and the assumption of Gaussian shapehfer t
output PDF will not hold. The coverage interval misg
overestimated when applying GUM in these conditions

400 -

200
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Figure 3 — Output PDF for inpdtt with Gaussian PDF.

Changing the shape and magnitude of this variabtg,
considering that a rectangular PDF is instead aeslido it,
will produce a much greater effect. In fact, foe tkame
relative values of uncertainty, that is, with limiset by
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[5,4- 6,6] s and [4,85 — 7,15] s, the resultingpau PDF
departs considerably from a Gaussian distributam
Figures 4 and 5 show, and the uncertainty evalnati

120

associated with the corresponding volumetric floater 1001 ]
using GUM or a MCM (Figure 2) approach are likety t [UEif[oarrg_dgsg]ibsution
produce rather different results. A further inceeas the 8of L 1

uncertainty associated with t, up to 50 % of itsamealue,
say, will lead to an exponential shape of the oupDF
(Figure 6).
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Figure 6 — Output PDF for inptivith uniform PDF.
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In this context, and bearing in mind this exampleg is
. confronted with the fact that a number of variabtem
influence the uncertainty evaluation, so that itjeatiteria
1 to support the decision of method selection sholoéd
established.
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Measurand [m?/s] 3.2 Close to the physical limit

To illustrate the concept behind the section tith,
example concerning the determination of an analyte
concentration in chemical metrology is used. Itl Wi the
basis for a discussion concerning the various amhres
available to deal with such constraints [4].

The problem is that it might not be possible, wiising

— . a conventional method for solving such a problem, t
e | guarantee feasibility of the solution. For instanan
application of the GUM uncertainty framework [1] ght
provide 0.30 % as an estimate of a concentration0a25 %

1 as the associated standard uncertainty. If the tduan
i concerned were characterized by a Gaussian distnihuhe
expanded uncertainty corresponding to a 95 % cgeera
probability would be 2 x 0.25% = 0.50 %, and herxe
95 % coverage interval for the concentration woublel
1 (0.30 £ 0.50) %. Since the part of this intervalttis below
0 % is infeasible, it is difficult to interpret giresult in a
14 16 82 22 24 meaningful way for an application. A correctly caugd
Measurand [m®/s] x 10 . .

coverage interval would have no negative valuesthod a
lower limit equal or greater than 0 %.

This prior knowledge of the feasible interval fdret

) ) output quantity can prove valuable in many instance
The uncomplicated nature of this example shouldbeot Bayes' theorem takes the form

a reason for a lesser impact. On the contrarg iitsi broad

Figure 4 — Output PDF for inptiith uniform PDF.
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Figure 5 — Output PDF for inptiwith uniform PDF.

range of applications, in areas such as chemiohime and g7 1x¥) =K I(x|n) 9(7) (2)
thermometry, that makes it a good example of hovain ) ) ] o
simple problem, things can easily go wrong. whereg(#) is a prior PDF forY, I(x|7) is the likelihood

In this particular problem, the factors that seemn tfunction for the datx, g(/7|x) is the posterior PDF foy,

influence mostly the output PDF are the input PDRhe  5ng K constitutes a normalization factor. In words, the
variable on the denominator and the relative valfiets degree of belief for a given valug of the measurand,

measurement uncertainty. For relative values otramty, expressed as the posterior PDF férgiven datax, is

in the referred variable, smaller or equal to 5e%€n having Chproportional to (a) the likelihood that will produce the

a uniform PDF will not produce an output PDF mu : :
different than the assumed Gaussian PDE. observed data, and (b) the degree of belief attributedrto
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before the observation, the so-called prior PDF Y¥or Carlo method make an assumption aboat u(x), e.g., that
expressed ag(7)). x is itself feasible.
The posterior PDF may be used to provide summary
information about the measuraivd such as its expectation
(mean) EY) and variance ), defined by ‘ [

E(Y)=[ng(r Wdn, V(Y)=EY-EY))?, (6)

The prior distribution represents the informatidroat
the valuesy available before the measuremantas taken,
while the posterior represents an aggregation ef ghor
information and that supplied by the data. In “ciath”
experiments, the information supplied by the datanuch
more comprehensive than the prior information, bt the
posterior is essentially proportional to the likelod. In
other circumstances, the prior distribution can taon 2 / ]
information that the data cannot supply. 0 M —

Figure 7 shows, for the cage= 0.1 andu(x) = 0.2, the oz o5 . o1 03 03 o
solution PDFs provided by a Bayesian treatment and Measurand
application of MCM as a numerical implementationtioé
propagation of distributions. The height of the-tast bin
is in fact greater than 20 rather than as shownpbgposes
of illustration, the chosen scale was used.
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Figure 8 — Comparison of solution PDFs providedhsyGUM
uncertainty framework (thin continuous curve), Bage approach
(thick continuous curve) and a Monte Carlo methsmhied
frequency distribution), for the caze= 0.1 andu(x) = 0.1. The
(shortest) 95 % coverage intervals are also sheMraken and

continuous vertical lines, respectively.

The Bayesian approach and the Monte Carlo method
treat the physical knowledge about the problemediffitly.
In the Bayesian approach the knowledge is treated
probabilisticall. The prior PDF for real analyte
concentration Y encapsulates the knowledge abovt
independently of any measurement, and through the
likelihood function a negative value of measured
7 concentration may arise for a positive value of sralyte
concentration with non-zero probability. In the usk a
] Monte Carlo method (and generally in the applicatid the
propagation of distributions with the proposed tiomwal
0 02 0s oa hs ppmmmem— model) the knowledge is treatddnctionally real analyte

concentration regarded as a quantity can neverbative,

even though measured analyte concentration alsarded
as a quantity can be positive or negative.

The modelling part of the solution approach is gaihe
a crucial stage. Although both functional and ptulistic
modelling have roles to play in the determinatidérfieasible
solutions, the choice of model is paramount, andhie

Finally, Figure 8 shows, and compares, for the casparticular class of problems the Bayesian approach,
x=0.1 andu(x) = 0.1, the results obtained from three of theapparently, has the edge. Looking into Figurei3 @bvious
approaches considered. The solution PDF providethby why: the Monte Carlo model aggregates all the pbessi
GUM uncertainty framework is shown as the Gaussiamegative values into zero leading to a shortemibision
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Figure 7 — Solution PDFs obtained from a Bayesieatiment
(continuous curve) and a Monte Carlo method (scapiency
distribution) corresponding to an estimate 0.1 and associated

standard uncertainty(x) = 0.2.

distribution (thin continuous curve), that providég the
Bayesian treatment as the thicker curve, and thatiged

curve for the rest of values, whereas the Bayesjmoroach
in its own formulation imposes the range of possimlues

by the Monte Carlo method as a scaled frequencfor the measurand and thus provides a more "bdlleVa

distribution. For each distribution the endpoints the

(shortest) 95 % coverage interval are shown, agkero

dotted and continuous vertical lines, respectively.

distribution associated with it.
Examples from dimensional metrology, e.g., surface
texture profiles, could have also been used to detnate

Both the Bayesian approach to the problem and see uthe relevance of incorporating prior knowledge irte

of a Monte Carlo method deliver solution PDFs theat
feasible. Furthermore, unlike the GUM

model uncertainty framework.

uncertainty
framework, neither the Bayesian approach nor thentslo
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3.3 Implicit functions whereas the same quantity determined through thatéMo

The example used to illustrate this class of proislés ~ Carlo method has a lower value af 0,92 kPa. This,
the calibration of a pressure balance (deadweigithine). however, is not the always the case, being perhap®
The methodology applied is based on a general fiation ~ €OMmMon the opposite situation where a GUM applcati
[5] and the results are supported on experimerdtd ¢B]. underestimates the uncertainty evaluation. In plaigicular
The expression for the determination of the regbire problem the non linearity and the ratio involvedghii

pressure value is: explain the situation, bearing also in mind tha tise of
second order derivatives might have diminished fthel
M 1-(p. ! p.))g result of the standard uncertainty. A better undexding of
= & ¥ (3) the reasons behind these differences would reduitber
A L+ Ap)+a(T -20) sensivity analysis, which is out of the scope ©f raper.

The variableM represents the total mass used and the 34 |terative processes
correspondinga, also applies to the total mass applied. The
others variables apply to the effective area ofpiseon €o),  {hermodynamic) that are established under specific
the distortion coefficient of the piston-cylinded)( the  ~onditions for a set of measurands. In some catbes,
temperature coefficienta) and mean temperature during thecomplexity of the phenomena under study leadseaitie of
calibration testT). It is relevant to point out that expression mathematical models based on iterative processetheas
(3) has neglected others influencing terms sudhas$ieight  onjy way to achieve adequate solutions.
difference and the piston angle to the verticald as A typical example is found in humidity related
therefore a simplification. _ measurements, where the dew point temperature atiaiu

It can be noted that the required pressure vaiue, 8  yses a reference two-pressure and two-temperature
appears in both sides of the equation, forcingof zero  generator. In this case, the conditions are geegrat a
finding numerical scheme. Under the GUM uncertaintycontrolled chamber containing an air moisture sémgpl
framework derivatives have to be calculated, foe thpeing measured the pressure and the temperatutbeof
sensivity coefficients, including the partial deiive ofpin  chamber and of a saturator. The mathematical mthae!

the implicit equation. It is advisable to use a pant matrix relates the measured quantities with the dew point
formulation as suggested [5] to determine the uBG®Yy  temperature]y, is given by:

associated with the pressure vabye

Some measurands are related to equilibrium statgs (

fws(pc'-rd) pws(Td)= fws(ps'-rs) pws(Ts)B&m (4)
u*(y)c? =c,'V,c, ©) Ps
where,

since it helps in the calculation stages, by alfgvthe P, , Ts - saturator pressure and temperature;
covariances\(,) and sensitivity coefficients(andc,) to be
accounted for in a systematic formulation.
_ Even_with the compact formulation the mathematicsfws(p,-r) - Enhancement factor [7];
involved in the solution of this type of problemandbecome
quite intricate. An obvious advantage of the Mo@arlo pws(T) - Saturation vapor pressure [7];
method (MCM) is precisely the simplification thas iuse .
can provide, and here is a good example. For thetidata 7/ — Saturator eficciency.
in Table 1 below, In this model, two of the input variable:tws(p,T) and

p. - Chamber pressure;

pWS(T), are obtained using relations with a number of
coefficients, given in [7], imposing a two-stagepegach to

Table 1. Input data for the pressure balance pnoble

Symbol Best Variation  Dist Units the evaluation of uncertainties problem.
Estimate of limits The iterative formula that gives the dew pointaadily
M 32,9000 +3,6x10° N [kq] obtained from (4)
8,0661x10°  +3,2x10° N m f T T
610 3,3x10%  +7,0x10% N [Laj] Q(Tdn): (P, S) pws( ) Pe n-1 (5)
g 9,8007 +1,0¢10° N [m.s9 fws(pc Ty, ) Puws (Tdn ) Ps
a 4,6x10° +4,210° T [°C] and a solution for the dew point temperature cam the
Pa 1,2 +2,0:10° T [kg/m’] found applying a Newton-Raphson method (6), pravide
P 7850,0 +5,010" T [kg/n] seed for the iterative 13 i b f
T 30,0 +10 R C] proces$, , a maximum number o
iterations,n, and a numerical criterion
where the letters in the™4column refers to distributions g(Td )
assigned to the input quantities, namely normal, (N) Tdn+1 =l 73 - (6)
triangular (T) and rectangular (R), the best edinfar the 9 Tdn

measurand is about 3,995 MPa. Using the GUM approac  Two approaches can be recommended for this type of
the value for the standard uncertainty is about,6 kPa metrological problem: MCM or Bayesian Inference.

2392



In the first case, it is required to know the pagtars of
the input quantities PDFs (pressures and tempesatfrthe
chamber and of the saturator), the numerical sitioulas
developed under an iterative process where theigolis
tested every time a cycle of calculations ends)dstopped
successfully if the numerical criterion is reached, not

each input variable will influence the validity dhe
approach taken to the evaluation of the measurement
uncertainty.

This paper was set out to establish simple, gemetes,
to decide upon the correct choice of method to qoerf
uncertainty calculations.

successfully if the maximum number of iterations is
performed without reaching the numerical criteriérstudy
using this approach is found in [8].

Regarding the use of Bayesian inference, the géner[1]
approach can be seen at [9], describing the maioegiure
of an inverse uncertainty evaluation approach,sthealled
inverse Monte Carlo (IMC) method. This techniqudééng
applied in a study [10] concerned with the evahratof 2]
measurement uncertainties in a two-pressure humidit
generator. The preliminary results show that IMGvies a
similar outcome in comparison with MCM, being the[3]
selection of the tolerance parameter a cruciabfaotIMC.

(4]

3.5 Final remarks

Summing up the studied cases, and taking intouattco
more general classes of problem well known and hyide

published, permits the construction of the follogvifable, 5]
Table 2. Summary of model choice cases.

(6]

Model GUM MCM Bayesian

Linear ) 4} %}
Non linear O 4} %}

Ratio O 4} - [7]
Physical limit O %}
Implicit O o4} -
Iterative 4] %}

: L (8]
where the inserted symbols refer to situations ddqaiate
(M), conditional ) and inadequatdX]) use. In the present
work, two of the cases where not studied using geBian
approach.

(9]

4. CONCLUSIONS

The solution approaches considered are capable [)]TO]
treating functional or probabilistic models to ttegree of
approximation typically required in practice. Howeythe
modelling itself constitutes a critical stage. Ttt@ice of
model dictates the solution.

Examples have shown that, depending on
mathematical model, the value and assigned disimitsi for

the
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