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Abstract − The steady state data reconciliation problem 

is approached via a geometrical picture of its model and 
measurement abstract spaces. By completely utilizing the 
structure of the problem constraint matrix, via its singular 
value decomposition (SVD), data adjustment is 
accomplished and redundancy and observability conditions 
are formulated. As an example, the method is applied to a 
small network of liquid flowmeters in order to ascertain the 
reliability of the measurement results.  
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1.  INTRODUCTION 

Data reconciliation has been used extensively during the 
past 30 years as a tool for control of industrial processes 
utilizing the measurements which are collected during 
process monitoring [1, 2].  By their nature, measurements 
contain inaccurate information which manifests itself as 
measurement error and which can be due to non-ideal sensor 
behavior or to the process itself. Maximizing the efficient 
use of the information which is available through the 
monitoring of the process is dependent to a large extent on 
the effective cancellation of these errors through data 
conditioning. Given the fact that the reliability of data 
collected during process monitoring is of the utmost 
importance in decision making and performance 
optimization, the use of a statistical technique such as data 
reconciliation is very appealing. Data reconciliation relies on 
the existence of redundancy to perform data adjustment 
based on a least squares criterion, whilst satisfying the 
model constraints representing physical laws underpinning 
the relationships between the measured variables. 
Furthermore, in situations where it is not feasible to measure 
all process variables it can furnish unmeasured variable 
estimates through the model constraints, provided they are 
observable [3].  

In the present work, the data reconciliation problem is 
analyzed by employing the “fundamental theorem of 
algebra” [4]. This approach could present certain advantages 
over other matrix decomposition or graph theoretic methods 
[3] by providing a clear geometrical picture and making 
more tractable complex problems by reducing their 
dimensionality as well as by easily identifying and 
providing estimates of unmeasured but observable variables. 
In order to apply the above, the singular value 
decomposition (SVD) [5] of the constraint matrix is used 
which decomposes the problem into vector subspaces which 
have the convenient property of being orthogonal 

complements of each other. As an example, the method is 
applied to adjust process data from a small liquid flowmeter 
network under different measurement conditions.  

2.  THEORY 

Given a process network with Xi, i = 1…n variables, the 
model describing their measured estimates yi is 

 
εΧy +=         (1) 

 
where Χ, y and ε are nx1 matrices representing the variable, 
measurement estimate and random error vectors with Ε(ε) = 
0, Ε(εεΤ) = Σ a nxn covariance matrix. If the process model 
is that of generalized mass balance equations at the m nodes 
of the network, assuming the absence of sources or sinks, it 
is represented by  

 
0=AX         (2) 

 
where Α is a mxn constraint matrix. The classical data 
reconciliation problem reduces to the estimation of the 
variables Χ, which minimize the RSS error by employing 
the criterion of weighted least squares while simultaneously 
satisfying the constraints, i.e.,  

 
]ΑΧλ2X)-(yΣX)-(y=εεmin -1TΤ Τ

ΧΧ
[min +   (3) 

 
where λΤ is a 1xm vector of Lagrange multipliers [6].  

Alternatively, the problem can be formulated without 
resorting to Lagrange multipliers, by considering that (2) 
only allows estimates which belong to the null space N(A), 
of Α, which is spanned by the solutions of AΧ = 0 and is of 
dimension n-r, where r is the column (row) rank of A [7]. 
Consequently, (3) can be written as   

 
)W-(yΣ)W-(ymin -1T ββ

β
     (4) 

 
where W is the nx(n-r) matrix whose columns are the basis 
vectors of N(A) and the vector β (n-r)x1 includes the 
estimates of the model parameters. The most reliable 
method of analyzing the structure of Α is through its SVD, 
e.g., the mxn matrix Α is decomposed as Α = UDVT where 
the orthogonal matrices U and V are mxm and nxn and are 
composed of the eigenvectors of AAT και ATA respectively. 
The mxn matrix D has its non-negative elements (the 



singular values which are equal to the square roots of the 
non-zero eigenvalues of ATA) in descending order which 
occupy the first r positions of the diagonal. Essentially, the 
SVD constructs orthonormal bases for the fundamental 
subspaces of Rm and Rn [4], i.e., 
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From (5) it becomes evident that a feasible solution of 

problem (4) only exists if N(A) ≠ {0}, i.e., if the mxn matrix 
Α is either rank deficient or full row rank (when m < n). In 
the former case the solution is not complete since it is also 
true that N(AΤ) ≠ {0}, i.e., the mapping Rm → Rn  is 
singular. 

In situations of partially measured systems, i.e., when all 
the variables Χi are not measured, the structure of the 
constraint matrix can be exploited so that all or some of the 
unmeasured variables can be estimated and as such be 
observable [3]. Since some of the constraints will be used 
for this purpose, this implies that the full constraint set 
might not be available for adjustment of all measured 
variables, in other words, some of them will be non-
redundant. Cases of such partially measured systems can be 
handled efficiently by separating the constraint set of (2) 
into two parts [8], as  

 

0=
ξ
'X

AAX •ξ       (6) 

 
X’ and ξ being the vectors of the measured and unmeasured 
variables respectively, ΑX and Aξ being the corresponding 
mx(n-s) and mxs constraint matrices and s the number of 
unmeasured variables. 

Since Αξ ∈ R(Αξ), an mxm matrix P which projects onto 
its left null space, N(Aξ

Τ), applied to (6) will yield the 
relation 

 
0=XA='XAP rX  '       (7) 

 
eliminating the constraints involving unmeasured variables. 
Αr is a reduced constraint matrix linking only measured 
variables. Furthermore, the projection matrix P, in terms of 
the SVD of Aξ, is written as 

 
UU-I=P T

ξ1ξ1mxm      (8) 
 

where Ιmxm is the unit matrix and Uξ1 is the orthogonal 
matrix consisting of the basis vectors of R(Aξ). The 
expression above is non-zero only when N(Au

Τ) ≠ {0}, i.e., 
when matrix Aξ is either rank deficient or full column rank 
(when m > s). With this projection matrix, it follows from 
(7) that the reduced constraint matrix consists of columns of 
AX after subtracting their components on R(Aξ). This in turn 
implies that if a column of AX is entirely in the R(Aξ) then 
the corresponding variable cannot be reconciled, i.e., it is 

non-redundant. This is a consequence of the lack of 
available information since it is only linked to unmeasured 
variables via the constraints. The estimation of the 
redundant variables can proceed via (4) where the matrix W 
consists of the basis vectors of N(Ar).    

Conditions of observability on unmeasured variables can 
now be established through (6), which, after adjustment of 
redundant variables has been accomplished, can be rewritten 
as 
 

ξ=ΖΑΑΑ- Τ
ξξ

Τ
ξ

-1)( )
      (9) 

 
where Z is an mx1 known vector and ξ

)
 is the sx1 vector of 

estimates of the unmeasured variables. From the above it 
follows that all estimates can be obtained if N(Aξ) = {0}, 
i.e., Aξ is full column rank (when m > n), so that the positive 
definite matrix Aξ

ΤAξ is invertible. When Aξ is either rank 
deficient or full row rank (when m < n) (9) cannot formally 
be solved. Fortunately, the use of a generalized inverse [9] 
via its SVD will yield a minimum norm solution *ξ

)
 as  

 
*ξ=ΖUDV- ξ

Τ

ξ

)+       (10) 
 
by eliminating contributions which originate from N(Aξ). 
The components of this solution vector which correspond to 
the columns of Aξ for which Vξ2

TAξ = 0 are estimates of 
observable variables.  

 3.  RESULTS 

3.1. Reconciliation with all variables measured 
The methodology is applied to a simple flowmeter 

network, with all variables measured, depicted in figure 1a, 
with figure 1b showing the corresponding constraint matrix 
resulting from mass balance at the 3 nodes of the network.  

 

 

 

 

 

 

variables 0 1 2 3 4 5
nodes
1 1 -1 -1 -1 0 0
2 0 1 0 1 -1 0
3 0 0 1 0 1 -1  

Fig. 1.  (a) The simple flowmeter network considered and (b) the 
constraint matrix Α which is of full row rank (rank (A) = 3). 
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Furthermore, the first two columns of table 2 show the 
actual flowmeter indications and the corresponding 
expanded uncertainties (k=2) of the measurements. 

From the SVD of the constraint matrix, as implemented 
on MATLAB,   
 

 )V,V(0DU=A 6x3
2
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it can be concluded that: 

1. there exist 3 non-zero singular values, i.e., the 
matrix is of rank = 3 

2. the left nullspace is empty, N(AΤ) = 0, since the 
matrix U2 does not exist. Consequently the solution 
which will result from weighted least squares 
fitting will be complete. 

3. the nullspace N(A) consists of 3 basis vectors 
(matrix V2

6x3) which can be used for the solution by 
performing: β)V-(yΣβ)V-(y 6x3

2
-16x3

2
Tmin

β
 

 
The data reconciliation results are shown in table 1 along 

with the associated expanded uncertainties (95% confidence 
level). The uncertainties were estimated from the covariance 
matrix, cov(β), of the parameters, β, and subsequent 
propagation of uncertainty [6], via the relation 
 

V)VΣV(Vy T
22
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2

-1
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where the dimensions of V2 have been left out for clarity. 
 

Table 1.  Data reconciliation results on the network of figure 1a. 

y (L) 
U(y) 
(k=2) y) (L) 

u( y) ) 
(k=1) ((y- y) )/u)2 y) -y 

20,45 0,82 20,85 0,23 0,951 0,40 

5,31 0,31 5,30 0,13 0,006 -0,01 

9,74 0,49 9,54 0,21 0,635 -0,20 

6,02 0,32 6,01 0,14 0,006 -0,01 

11,47 0,49 11,30 0,15 0,454 -0,17 

20,39 1,45 20,85 0,23 0,402 0,46 
 
The “goodness of fit” is estimated by the index χ2. The 

statistical significance test to be conducted is Prob( χ2(ν) ≥ 
χ2

obs) < 5%, where ν the degrees of freedom, which in the 
particular example are ν=3 and χ2

obs the squared sum of the 
weighted residuals. From the calculation we obtain χ2 (5%, 
3)=2,60 > 0,82 = χ2

obs hence the null hypothesis of no 
systematic errors is accepted at the 5% level of significance.   

3.2. Reconciliation including non-measured variables 
Let us re-examine the flowmeter network depicted in 

figure 1a but now because of metering cost reduction the 
variables X1 and X3 are not measured even though an 
estimate of their values is still required. Following the 
treatment of section 2, the constraint matrix of fig. 1b is 

partitioned into two parts, the one corresponding to the 
unmeasured variables being 

 
 -1 -1 
Aξ = 1 1 
 0 0 

 
which is obviously rank deficient, implying in turn that 
N(Aξ) ≠ {0}, hence the unmeasured variables are not 
observable. The SVD of this matrix is 

)V,V(DUU=A 2x1
ξ2

2x1
ξ1

T22
ξ

3x2
ξ2

3x1
ξ1ξ

χ where the smallest singular 
value of Dξ

2x2 is zero. This is in agreement with the non-
observability rule determined by graph theoretic methods 
concerning loops consisting solely of unmeasured flow 
streams [2, 3].  
 Additionally, from the SVD it is seen also that N(Aξ

T) ≠ 
{0}, signifying that at least some redundancy exists among 
the measured variables. Application of the projection P on 
the matrix of measured variables results in the reduced 
constraint matrix 
 

    0,5 -0,5 -0,5 0 
Ar = 0 1 1 -1 

 
which is of full row rank, its SVD being 

)V,V(DU=A 2x4
2r

2x4
1r

T2x2
r

2x2
1rr . The results of the adjustment by 

employing its null space basis vectors are shown in table 2.   

Table 2.  Data reconciliation results when variables X1 and X3  are 
unmeasured. 

Xi y (L) 
U(y) 
(k=2) y) (L) 

u( y) ) 
(k=1) y) -y 

0 20,45 0,82 20,49 0,41 0,04 

2 9,74 0,49 9,64 0,23 -0,10 

4 11,47 0,49 11,37 0,23 -0,10 

5 20,39 1,45 21,11 0,36 0,72 
 
In a seemingly similar situation, assume that the 

variables X2 and X4 are not measured. Note that now the 
variables are part of a loop consisting of both measured and 
unmeasured flow streams. The constraint matrix 
corresponding to the unmeasured variables now is 

 
 -1 0 
Aξ = 0 -1 
 1 1 

 
with an SVD )V(DUU=A 2x2

ξ1
T2x2

ξ
3x1
ξ2

3x2
ξ1ξu  and the smallest 

singular value of Dξ
2x2 non-zero. Since N(Aξ) = {0} then 

both the unmeasured variables are observable and can be 
estimated through (9). In addition N(Aξ

T) ≠ {0} suggesting 
that some degree of redundancy exists for the measured 
variables which can be used to produce adjusted estimates 
through the reduced constraint matrix 
 



Ar = 0,33 0 0 -0,33 
 
It is evident from the zero’s in the second and third columns 
that the corresponding variables are non-redundant because 
they belong to R(Aξ). The SVD of this matrix is   

)V,V(0DU=A 3x4
2r

1x4
1r

T3x11x1
r

1x1
1rr , yielding adjusted variable 

values by employing its null space basis vectors as shown in 
table 3. In the same table are included the estimates of the 
observable variables also. It is interesting to notice that the 
values for variables X1 and X3 have not been reconciled in 
the process since they do not appear in the reduced 
constraint matrix.  The uncertainties of the estimates of the 
observable variables were determined via the relation 
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where )ycov()  is the covariance matrix of the estimates of 
the measured variables. 

Table 3.  Data reconciliation results when variables X2 and X4  are 
unmeasured. 

Xi y (L) 
U(y) 
(k=2) y) (L) 

u( y) ) 
(k=1) y) -y 

0 20,45 0,82 20,44 0,36 -0,01 

1 5,31 0,31 5,31 0,16 -- 

2 -- -- 9,11 0,42 -- 

3 6,02 0,32 6,02 0,16 -- 

4 -- -- 11,33 0,22 -- 

5 20,39 1,45 20,44 0,36 0,05 
 

4.  DISCUSSION 

The justification of the use of the SVD in data 
reconciliation problems warrants some comments, due to its 
computational intensity and given the fact that other 
algorithms such as the QR decomposition are effectively 
implemented in existing software packages. In fact the 
computational cost of the SVD is, at least, to a degree 
balanced by the reduced dimensionality of the transformed 
estimation problem. Thus instead of having to estimate n 
parameters according to the measurement model (1), under 

the constraints of (2), only n-r parameters are determined by 
using the null space basis vectors as determined through the 
SVD of the constraint matrix. Furthermore, the complete 
decomposition by the SVD of model and measurement 
spaces in the case of partially measured systems affords at 
little extra cost a classification of variables as observable 
and redundant. In fact, this is the great advantage of the 
method which through a clear picture of the geometry of the 
data adjustment can diagnose potential ill-posedness 
problems and at least point to the direction of how to 
overcome them.  

     Finally, it should be mentioned that the uncertainty 
estimates of the reconciled data, as shown in tables 1 to 3, 
are quoted to a confidence level well below that of 95%. The 
reason for this is the limited number of degrees of freedom 
of the estimates in the example situations presented which 
produce unrealistically large coverage factors for the above 
confidence level.   

5.  CONCLUSIONS 

Based on a study of the null spaces of all constraint 
matrices which can appear in steady state data reconciliation 
problems, algebraic observability and redundancy 
conditions have been formulated. The singular value 
decomposition of the model constraint matrix coupled with 
the notion of the four fundamental subspaces of a linear 
transformation provide a clear geometric picture of its 
structure enabling null space methods to be readily applied.  
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