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Abstract − Within several applications concerning the 

improvement of vehicle safety, accurate systems for 
determination of position, velocity and acceleration are 
useful. We present a system for accurate determination of 
these parameters using a sensor fusion technique. The main 
focus is on how GPS carrier phase data and accelerometer 
data are modeled and integrated in a Kalman filter that 
provides both estimates and accompanying uncertainties. 
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1.  INTRODUCTION 

Accurate information about position, velocity and 
acceleration is useful for several applications with the aim of 
improving vehicle safety. In for example advanced outdoor 
crash tests, studies of wind loads on cars and driver 
behaviour knowledge about position, velocity and 
acceleration at high sampling rates are important. We 
present a system for accurate determination of position, 
velocity and acceleration of a vehicle, by using a sensor 
fusion technique for combining GPS carrier phase 
technology with accelerometers to achieve an increased time 
resolution.  

 
The main focus in the paper is on how the GPS carrier 

phase data and accelerometer data are integrated in a multi 
rate Kalman filter and how the system is modeled as well as 
how process parameters are determined.  

 

2.  STATE-OF-THE-ART GPS/INS INTEGRATION 

Kalman filter algorithms are widely used in the field of 
navigation to integrate different navigation sensors such as 
GPS and Inertial Navigation Systems (INS) in order to 
exceed the performance of the individual sensors.  

 
Smyth et al. [1] shows by simulations the advantages of 

combining information from displacement sensors and 
accelerometers in dynamic system monitoring. The method 
provides improved estimates of velocity and displacement, 

avoiding low frequency noise amplification from the 
accelerometers and high frequency noise amplification from 
the displacement measurements. Smyth et al. also brings up 
the fact that higher sampling rates are available with 
accelerometers and that this also can be used to increase the 
limited time resolution in GPS (State of the art GPS samples 
with a rate of 20 Hz). The maximum sampling rate of the 
measured acceleration was set to 1000 Hz in their 
simulations.    

 
Most integrated navigation systems are today, as in [1], 

loosely coupled [2], which means that displacement data (in 
most cases GPS position estimates) are integrated with INS 
data in the navigation filter. However, tightly coupled 
systems where raw GPS data, in the form of 
pseudoranges/delta-ranges, instead of positions, are directly 
integrated with INS data are often superior [2]. Such an 
algorithm is demonstrated and tested in [2] together with a 
method where time differenced GPS carrier phase 
measurements are used to improve the accuracy of the 
velocity estimates. 
 

Relative GPS carrier phase measurements can be used to 
reach centimeter accuracy in the estimated positions. Gao et 
al. [3, 4] presents a centimeter level vehicular positioning 
system, using GPS/INS G-sensors/yaw rate sensors and 
wheel speed sensors, with focus on maintaining accuracy 
during GPS outages. The system uses GPS carrier phase 
measurements with resolved integer ambiguities and 
provides position, velocity and attitude at an update rate of 
20 Hz. Also Kim et al. [5] presents simulations from a 
complete GPS/INS integration algorithm with GPS carrier 
phase measurements. 
 

Integer ambiguity determination and cycle slip detection 
can be improved by using INS information. Kim et al. [5] 
suggests an INS aided integer ambiguity resolution 
algorithm. Petovello et al. [6] also shows the advantages of 
using INS information. They present an ultra-tight GPS/INS 
navigation strategy for centimeter-level GPS carrier phase 
positioning in weak signal environments, by using a 
software based receiver with INS aided tracking loops. This 
method provides a sensitivity improvement in terms of 
position accuracy, and they suggest that with this technique 



the RTK capability could be expanded in weak signal 
applications, with difficulties to track the carrier phase. 
 

This paper presents high precision (centimeter level) 
estimation of position, velocity and acceleration for a 
moving vehicle with an update rate of 1000 Hz. This is 
achieved by combining GPS and accelerometer data in a 
tightly coupled multi-rate Kalman filter algorithm. Relative 
GPS carrier phase measurements are used to achieve the 
obtained precision in the position, velocity and acceleration.  

 

3.  MEASUREMENTS 

The developed system consists of accelerometers and 
GPS receivers. Two accelerometers are mounted in the 
vehicle perpendicular to each other so that one 
accelerometer measures the acceleration in the driving 
direction and the other one measures the acceleration 
sideways. Booth accelerometers measure the acceleration 
with a sampling rate of 1 kHz. Due to the design of the 
accelerometers frequency components below 0.2 Hz are not 
captured. The accelerometer measurements are then 
transformed to the GPS coordinate system by multiplying 
them with a transformation matrix T, where θ is the angel 
between the two coordinate systems. A simplifications is 
here made of the coordinate systems and the accelerometer 
data is only projected into the horizontal components of the 
GPS coordinate system. 
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The GPS equipment consists of a reference antenna and 

receiver positioned at a known location and an antenna and a 
receiver mounted on the vehicle, referred to as the rover. 
Both GPS receivers measure the received signal phase at the 
respective antenna at two different frequencies, f1 and f2. 
The observed phase is sampled at a frequency of 20 Hz. 

  
The phase measurements from the rover and the 

reference receiver can be described by (2) and (3), where ϕ 
is the measured phase in fraction of cycles, ρ is the 
geometrical distance between the receiver and the satellite, 
N is the integer number of cycles referred to as the 
ambiguity parameter. The δt represents the combined 
satellite and receiver clock error, lo is the error in the 
reported satellite position, lt is the signal delay in the lower 
part of the atmosphere referred to as the troposphere, li is the 
signal delay in the ionosphere part of the atmosphere, and ε 
is measurement error. λ is the signal wavelength and f is the 
signal frequency [7]. 
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By multiplying (2) and (3) with the signal wavelength and 
subtracting them, we obtain a phase difference 
measurement: 

 

DtDtcN εδρϕλ +Δ+++Δ=Δ l   (4) 
 

 
In (4), we have assumed that the orbital errors and the 
ionospheric delay are approximately identical for the two 
receivers, because the separation is relatively small, and thus 
cancel each other. The contribution from the troposphere, 
however, depends on the height difference between the 
rover and the reference station as the signals at the two 
antennas experiences different amounts of troposphere. The 
main part of the tropospheric delay that remains can be 
approximated using height difference information as 

 
mzlt ××Δ=Δ 0χ     (5) 

 
where Δz is the height difference between the rover and the 
reference. The parameter 0χ  is the refractivity coefficient at 
the surface of the earth [7], and m is a mapping function 
used to relate observations in the zenith direction to the 
direction of the satellite. To achieve the necessary 
information about the height difference Δz a preliminary 
estimation of the reference and rover positions are 
performed using the less precise code observables. 
 
      Start values for the integer parameter, N, in (4) are found 
from evaluating candidates and choosing one set of integer 
values that optimizes the match between the models and the 
measurements. We use the code data to find a priori values 
of N in this evaluation. The integer values are expected to 
remain constant in time. There are, however, instants when a 
receiver temporarily loses the continuous tracking of a 
certain satellite signal while later resume it. Under such 
circumstances, the correct value for N after the break differs 
an integer number from the previously chosen value for this 
satellite.  In order to detect these cycle slips, the phase 
observables L1 and L2 at the two frequencies, f1 and f2 are 
compared at two adjacent points in time. The change 
measured in units of length is expected to be approximately 
equal at the two frequencies. We form the test 
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where λ is the wavelength for signals at the two different 
frequencies and ϕ is the corresponding phase difference in 
(4), and Ψ is the test limit. We use a value of 3 mm for Ψ. 
This is, with some margin for noise, enough to detect the 
difficult cycle slip combination of 9 cycles on L1 and 7 



cycles on L2. If the requirement in (6) is fulfilled for a 
satellite, this satellite is temporarily excluded from the 
calculations, and a solution is formed from the remaining 
satellites. We use this solution to determine an N value for 
the excluded satellite.  
 
      By subtracting the derived tlΔ and N from the measures 
in (4) we obtain a set of corrected phase difference 
measurements that are used in the estimation procedure. 
 

4.  SENSOR FUSION 

We estimate the discrete states of the sought parameters, 
position, velocity, and acceleration using a Kalman filter [8]. 
The measurement model of the filter is the assumed linear 
relationship between the input quantity, i.e., the 
measurements, z, and the output quantity, x, that we want to 
estimate. This relationship is described by the observations 
matrix, H, containing the partial derivatives 

 
z = Hx + v      (7) 
 

where v is the measurement noise. The input quantity, z, 
contains the corrected phase difference measurements from 
the two GPS receivers and the acceleration measurements in 
two directions from the accelerometers. The output quantity, 
x, contains the variables 
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where re , rn  and rv  are the components of the baseline 
between the reference and rover antennas, er& , nr& , vr&  are 

the velocity components of the rover, er&& , nr&& , vr&&   are the 

corresponding acceleration components, ae
LF ,an

LF  are the 
low frequency components of the rover acceleration not 
captured by the accelerometers, and τ is the difference 
between the local clocks in the two GPS receivers. 
 
       We use a matrix Φ to describe the relationship between 
the current state k and the next state k+1 of the output 
quantity, x.  
 

kkk wxx +Φ=+1    (9) 
  
where wk  is process noise. Hence, the covariance matrix of 
the process noise wk. is 
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Using the state transition matrix Φ, we predict the next 
discrete state k+1 of the position Γ={re, rn, rv} as a linear 
function of the previous position, velocity and acceleration:  
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We model the acceleration and the clock difference as 

random walk processes. The low frequency parts of the 
accelerations are modeled as Gauss Markov processes. 

 
Random walk: 
We define a discrete random walk process, μ, as a 

sampled Wiener process [8]   
 

kkk n+=+ μμ 1     (12) 
 

where n is a zero mean white noise sequence. Hence the best 
prediction of a random walk process value is the previous 
value of the process and thus the representing element in Φ 
is equal to 1.  The process noise covariance matrix can be 
written as 
 

tQ Δ⋅= α     (13) 
 
where α is a constant characterizing the process and Δt is the 
time between the samples k and k+1. 
 
       In order to find representative values for our 
acceleration parameter α, we estimate Q for different Δt. 
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where am is measured acceleration. Fig. 1 shows Q for a 27 s 
long data section. The green curve is based on 
measurements from the accelerometer mounted in the 
driving direction of the car and the red curve is based on a 
preliminary GPS acceleration estimates.  
 

 
Fig. 1 Example of an estimate of Q based on 

measurements from the accelerometer (green) and 
GPS (red). 

 



A fit to the data in the figure gives a value for α that we use 
in our processing. 
 

Gauss Markov: 
 We model the low frequency variations, not captured by the 
accelerometers, as a Gauss Markov processes which is a 
stationary Gaussian random process with an exponential 
autocorrelation function. The modeling is performed by 
describing the true acceleration, r&& , as the measured 
acceleration plus a slowly varying Gauss Markov process 
aGM: 

 

GMm aar +=&&     (15) 
 

The state of the Gauss Markov acceleration is in the Kalman 
filter modelled as.  
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where e-BΔt

 ,  which describes the exponentially decaying 
correlation of the Gauss Markov, is the state transition factor 
used in the Φ matrix to describe the Gauss Markov process 
and  n is the process noise of the Gauss Markov process.  
 
       In order to characterize this Gauss Markov process, the 
accelerometer measurements are compared to GPS-only 
estimates of the acceleration. The difference between these 
two sets of measurements represents the low frequency 
process, aGM that the accelerometers do not produce. We 
estimate the time constant 1/B of the Gauss Markov process 
by analyzing the autocorrelation of this difference. 
 
 

MEASUREMENT UNCERTAINTY  

We evaluate the measurement uncertainties using the 
Kalman filter error covariance matrix P. The diagonal 
elements of the matrix P contain the standard measurement 
uncertainties squared for each output quantity. P is 
determined for each epoch k as  

 
−−= kkkk PHKIP )(    (17) 

 
where H is the observation matrix from the measurement 
model in (7), K is the Kalman gain, see [8], and −P  is the a 
priori error covariance. The a priori error covariance is a 
function of the state transition matrix Φ, process noise 
covariance matrix Q and error covariance matrix P from the 
previous epoch, k-1. 
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The process noise parameters, in the noise covariance 

matrix Q, are as described in the stochastic modelling 
statistically determined by structure functions from the 
driving dynamics of the car. 

 
       As described above the estimated state variables and the 
corresponding uncertainty in the Kalman filter is dependent 
on the models and parameters used in the Kalman filter. The 
measurement uncertainty used as input to the Kalman filter 
just propagates trough the filter, hence good traceability is 
achieved.  With proper modelling and accurately estimated 
noise parameters good control of the uncertainty estimates is 
possible. 

 

5. RESULTS 

We evaluated the system by an open-sky field 
experiment with the measurement system mounted in a car 
at a test location with minimal obstruction of the GPS 
signal. The experiment was performed 13.00-14.00 UTC on 
November 17, 2008. Measurements were collected during 
15 minutes. The driving dynamics varied with velocities 
between 0 and 100 km/h and with both rapid accelerations 
and decelerations. Fig. 2 shows the speed estimate during an 
85 second long section of the experiment. The initial part 
shows the speed of the car while driving at a freeway, the 
rapid decrease in speed at the end of the period corresponds 
to a rapid deceleration at a freeway exit.  

 
  

 
Fig. 2 Speed estimate during a period of 85 s (green). A 

100 ms long section (black) of this period is 
presented in Fig.2. 

 
Fig. 3 shows a 100 ms long section of the speed 

estimate. The section is a short snapshot during the 
deceleration shown in Fig. 2.  In the figure is also shown the 
measurement uncertainties associated with each speed 
estimate. As can be seen, the expanded uncertainty is about 
± 0.2 km/h using a coverage factor k=2. A slight increase in 
the measurement uncertainty can be seen during the periods 
with only accelerometer data. 

 



 
Fig. 3 Speed estimate during a 100 ms long period. The 

error bars in blue show the expanded measurement 
uncertainty with a coverage factor k=2. 

 
 

6.  DISCUSSION 

The process noise parameters estimated in this 
experiment were estimated based on a 27 second long 
section of data from the 15 minute long experiment. The 
driving conditions during the experiment were as described 
varied with periods of very calm driving mixed with periods 
of driving with high dynamics. As a consequence, the 
process noise parameters may have been overestimated for 
applications with only low driving dynamics and slightly 
underestimated for very dynamical conditions. To improve 
the accuracy we could, for example, use process noise 
parameters that are determined from an independent data set 
with driving dynamics representative for the driving 
conditions of the specific application. For example the 
driving dynamics for a crash test application should be 
estimated from data collected from previous crash tests. 

 

7.  CONCLUSIONS 

We have developed a system and methodology that 
provides position, velocity and acceleration estimates of 
high accuracy in the horizontal components with a time 
resolution of 1000 Hz. The method provides good control 
over the measurement uncertainties through the Kalman 
filter algorithm. However, independent evaluation should be 
performed in order to assess the results.    

 
For future experiments we will extend the number of 

sensors e.g., use combined tri-axial accelerometers and 
gyros. By doing this all three acceleration components can 
be measured to improve the result, and the gyro information 
could be used for determining the direction of the car. To 

utilize the gyro information the Kalman filter must be 
augmented with state variables corresponding to the gyro 
information. Furthermore to avoid the Gauss Markov 
modelling and to minimize the number of parameters that 
have to be estimated in the Kalman filter it is of interest to 
find accelerometers that provides DC information. Though 
when using accelerometers that provides DC information a 
study of how the gravity filed effects the result must be 
carried out to be able to compensate for this. 
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