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Abstract − We present the applicability of hierarchical 

agglomerative cluster algorithms to terahertz (THz) 

spectroscopic analysis. We show the influence of different 

windowing and filtering methods in the spectral data pre-

processing to enhance the clustering results. Two distance 

measures are compared. Classical Euclidean distance on the 

full frequency range and a distance working only on the 

minima of the spectra. We further show the adaptability of 

our clustering methods for THz hyper-spectral image 

classification and visualization. 
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1.  INTRODUCTION 

The faster data is generated the faster one is confronted 

with the necessity of computer aided data organization. The 

goal of cluster analysis is to categorize a given amount of 

data without prior knowledge about the resulting classes.   

With the development of efficient emitters and detectors 

both THz spectroscopy as well as THz hyper-spectral 

imaging are becoming important scientific and practical 

topics [1]. These technologies are particularly interesting for 

non-invasive testing and security control. Most chemical 

compounds, such as drugs and explosives, have  

characteristic absorption lines in the THz spectral range. 

Therefore their fingerprint regions can be found in the 

transmission spectra.  THz spectroscopy and hyper-spectral 

imaging are mainly based on pulsed THz systems, where 

time-domain signals (pulses) are recorded. To obtain the 

transmittance from the measured data a number of 

calculations have to be executed, such as Fourier transform 

to the frequency domain and considering a set of reference 

data. Consequently, small flaws in the original 

measurements can have big impact on the resulting 

transmittance. To cope with that problem, it is advisable to 

execute pre-processing and filtering steps before applying a 

cluster algorithm. The cluster algorithm itself mainly 

depends on the similarity measure and the features it works 

on [2]. While in spectroscopy those are a subset or a 

transform of the transmittance over the respective  

frequencies, in imaging, information from the time resolved 

as well as frequency resolved spectra is combined. Thus 

similarities expressed in different dimensions can be 

visualized.  

2.  METHODS 

To suppress the influence of side effects due to the 

finiteness of the measurement, of artefacts such as overlap 

or echoes of pulses, and of measurement noise, various pre-

processing steps are applied. These are windowing in the 

time domain, filtering out frequencies with a low spectral 

density, and smoothing in the spectral domain. An important 

step of clustering itself is the determination of an 

appropriate distance measure. We compare Euclidean 

distance on all frequencies with clustering on a preselected 

number of frequencies.  

2.1. Pre-processing and Filtering 

It is a common method to apply apodization functions 

prior to the Fourier transform to eliminate undesirable 

effects. In nearly all time resolved measurements one has to 

deal with the fact that the Fourier transform acts on the 

assumption of infinite periodic signals while experimentally 

given data usually is finite. Thus the effect of spectral 

leakage has to be considered. In addition to that, especially 

in THz measurements one can have the problem of more 

than one pulse appearing in one signal. This is commonly 

observed due to multiple reflections of the THz pulse within 

the sample or the optics, resulting in echo pulses succeeding 

the original pulse. However this can also appear for laterally 

inhomogeneous samples, when due to the relatively low 

lateral resolution in the millimetre-range two regions with 

different properties are within the focus of the THz beam. 



Then, both regions contribute to the measured signal and if 

the THz pulse experiences different time-delays, double-

pulse features are observed. The calculated spectra will then 

contain the overlapping frequencies of both pulses and not 

show characteristics of each one of them separately. The 

problem of identifying different pulses within one spectrum 

is non trivial as their amplitudes might have similar heights 

and they might be close together and therefore not only 

overlap in the frequency domain but already in the time 

domain. A first approach used here is to assume the 

maximal amplitude to be the one of interest, i.e. the sample 

pulse, and to neglect any other pulses. The latter is 

considered to be undesired information and therefore filtered 

away.  For that a Nuttall window with a support chosen 

depending on the width of the reference pulse is used. To 

eliminate the effect of spectral leakage a broad Hamming 

window is used [3]. 

 

Before calculating the transmittance, the noise floor and 

the dynamic range given by the reference measurement are 

used to determine the relevant frequency range. 

Measurements outside the dynamic range are not 

considered, spectral densities below the noise floor are 

smoothed generously [4]. The transmittance in general is 

smoothed lightly to suppress measurement noise. Two 

filtering methods are compared, namely Wavelet shrinkage 

and a Savitzky-Golay filter. The latter is one of the most 

prominent filters in chemometrics. This is due to its easy 

and fast calculability as well as its capacity to preserve 

peaks [5].  

The other approach is Wavelet shrinkage [6]. The main 

idea of Wavelet transformation is a loss free hierarchical 

decomposition of a signal on a basis of so called Wavelets 

which can be considered band pass filters with certain 

desirable properties. The main advantage compared to the 

Fourier transform is the possibility to express characteristics 

with respect to frequency as well as time. In that way it is 

possible to control the degree of influence certain 

frequencies have on the signal depending on the interval 

they occur in. Although the amount of information one gets 

is quite sophisticated the discrete Wavelet transform is 

computationally very efficient thanks to a down-sampling 

mechanism that is applied during the procedure [7]. 

2.2. Clustering 

One of the main problems in organizing a big amount of 

spectra especially in hyper-spectral imaging is that while the 

information per pixel contains hundreds of channels the 

final visualization is reduced to a two or at most three 

dimensional image. An approach often used to give a first 

impression of the content is to show single features such as 

the time delay or the main amplitude of the THz pulse. 

Changing to the spectral domain the integral over the valid 

frequency  range might be used as a feature or the integral 

over the relevant part of the frequency range. To do the 

latter the region of interest of the spectrum must be known 

beforehand, e.g. looking for lactose in a THz spectrum one 

would chose only the frequencies around 0.5 THz as the 

characteristic peak can be found in that region. A problem 

with that method arises if a number of unknown compounds 

are expected to appear. The integral over the whole relevant 

frequency range might be equal although the spectra are not. 

Furthermore if the characteristic regions of a spectrum are 

not known beforehand one cannot specify the region of 

interest. Therefore rather than taking only the absolute 

integral of each spectrum as a feature it is advisable to 

calculate distances between the spectra, thus validating them 

with respect to each other, and organizing the data according 

to that distance. This is achieved by using clustering 

algorithms.  

 

Clustering is also known as unsupervised classification. 

Classification in general deals with assigning classes to a 

given set of data. In supervised classification the desired 

classes are known beforehand and a sufficiently 

characterizing set of samples from each class is given. In 

clustering, only the data is given and is being ordered with 

respect to a certain distance measure. The distance between 

samples in one class is to be minimized while the distance 

between clusters is to be maximized.  

Clustering algorithms are divided in at least two groups: 

partitional and hierarchical algorithms. While in partitional 

clustering the data is distributed to classes on one level, in 

hierarchical approaches the clustering is carried out 

iteratively. Though hierarchical algorithms are slower than 

partitional ones they do not need initial parameters and thus 

work more adaptively. Furthermore they provide the user 

not only with the clusters but also with information about 

the distance between these clusters [8].  Therefore clustering 

the spectra is executed with a hierarchical method.  

The procedure of classical agglomerative clustering 

operates in the following way: Starting with one sample per 

cluster in each iteration the closest clusters are united. 

Assuming a given distance between the samples the 

closeness of the cluster is defined by the link function. There 

is a generalized form of this function [9]. When merging the 

clusters 
j

C  and 
k

C  the distance of the resulting cluster 

jk
C  to another cluster 

l
C  will be:  

( ) ( ) ( )jk l j j l k k lD C C D C C D C Cα α, = , + , + ...  (1) 

    ... ( ) ( ) ( )j k j l k lD C C D C C D C Cβ γ, + | , − , | .  

The distance used in this paper is the complete link 

distance where the coefficients in (1) are set to 

{ } {1/ 2,1/ 2,0,1/ 2}
j k

α α β γ, , , = . Good results are 

achieved with this method when edges between clusters are 

unclear and need to be emphasized.    

2.3. The Distance Measure 

The result of clustering is mainly influenced by the 

chosen distance measure. Most commonly used in metric 

spaces is the Euclidean distance or another Minkowski 

distance measure. The main disadvantage of this approach is 

the so called “curse of dimensionality” [10]. Handling many 

dimensions, the accumulations of small differences over all 

frequencies can have the same effect as one big differing 

peak. The proposed alternative approach is useful in coping 

with this. THz spectra have comparatively broad bandwidth 

features. Given a smooth shape of the spectra, it is therefore 



possible to find the peaks of each spectrum. Those peaks 

represent the differences between the cluster. Minima are 

computationally characterized by being the point where the 

medium gradient of an interval switches from negative to 

positive. The choice of the size of the interval and the 

smoothness of the spectra is essential in finding the relevant 

peaks instead of noise. The distance measure is then defined 

as follows: 

 

Definition 1: Let 1{ }
f r

X x x= ,...,  be the frequencies 

of the minima of sample 
X

S  and 1{ }
f k

Y y y= ,...,  be the 

frequencies of the minima of sample 
Y

S . The distance 

between 
Y

S  and 
X

S  is then defined by: 

 D(S
2) ( [ ] [ ])

f f

X Y X Y

f X Y

S S f S f
∈ ∪

, = −∑ . 

 

As most THz spectra of solids have few but broad peaks, an 

immense feature space reduction is achieved and thereby the 

problems of high dimensionality are diminished. 

Furthermore the computational costs of calculating a 

distance matrix are shrunk considerably.  

 

3. APPLICATION 

 

Fig. 1.  One signal with two pulses (shown in the upper left) is 

filtered in a way that only the main pulse remains. The effect on 

the spectra is shown below. 

 

We apply clustering on two different kinds of test data: 

firstly on high resolution spectra of five chemical 

compounds, namely PABA (4-aminobenzoic acid), acetyl 

salicylic acid, salicylic acid, lactose, and tartaric acid, 

recording nine spectra of each compound. This is done to 

qualitatively evaluate the effect of the pre-processing steps 

as well as the outcome of the clustering. Evaluating 

clustering results is difficult due to the fact that in general 

one does not know which result is correct. Therefore, a 

method often used in cluster validation is to first try out 

clustering on a data set with known results and to then 

compare the outcome of the clustering with this known 

result. The aim in clustering the five chemical compounds is 

to be able to automatically distinguish the compounds from 

each other without prior knowledge about their form. In this 

application the transmittance is the basis for clustering. Our 

second set of test data consists of hyper-spectral images of a 

plastic toy figure and an envelope containing highly 

absorbing parts as well as chemicals.  

3.1. Spectra of Chemical Compounds 

Prior to clustering, pre-processing is done in the above 

mentioned way. In Fig. 1 (bottom) the transmittance of the 

original and windowed time signals of lactose is shown. The 

windowing mainly serves to confine the time window so 

that any echoes or double-pulses are removed. In each 

spectrum the maximal peak is determined and depending on 

the resolution the windows are applied. The windowed 

spectra have clearer peaks and contain less noise - with 

respect to similarity - than the un-windowed ones. 

 

 

Fig. 2. Reference spectrum, spectrum of lactose and noise. The 

cyan colored line is the noise floor. The cut off frequency is set to 

where the spectral information stays within the noise-floor. 

 

To calculate the transmittance from the spectra,  the 

reference pulse, sample pulse, and noise floor are taken into 

consideration. In Fig. 2 this is presented. Using the dynamic 

range of the reference, regions with useful information can 

be found. As the level where a measurement approaches the 

noise floor differs for each sample, the respective regions 

are smoothed generously rather than cut off. 

To further enhance the finding of relevant minima and 

maxima, it is advisable to apply smoothing filters. 

 

 

 

 

 

 



An example of the result can be seen in Fig. 3, where a 

Savitzky-Golay filter has been used.  

 

  

 

Fig. 3. Lactose spectrum filtered and unfiltered.  

 

The Savitzky-Golay filter produces similar results as the 

Wavelet shrinkage. The peak preservation is slightly better 

in Wavelet shrinkage while in finding minima and maxima 

both perform similar. For our further calculations we choose 

the Savitzky-Golay filter, because it is computationally 

faster. 

 

 

 

Fig. 4.  Logarithmic transmittance of five chemical compounds 

after pre-processing and windowing 

 

In Fig. 4 example spectra of the five compounds after 

pre-processing can be seen. These spectra are the basis for 

the clustering. They show the typical form of THz spectra of 

solids with only few but broad peaks. 

 

As proposed before, classical agglomerative clustering is 

performed. The evaluation is done by considering 

misclassifications and quality of clusters in terms of inter- 

and intra-cluster distance. Clustering the raw transmittance  

spectra results in more than 30% misclassification 

depending on the clustering level. 

 

 

 

Fig. 5.  Tree graph showing (parts of) the clustering result. The 

higher the uniting point of two clusters the bigger the distance 

between them. The distance between salicylic acid (samples 19-24) 

and acetyl salicylic acid (samples 1- 6) is bigger in the top level 

picture, while the misclassification of sample 14 is suppressed at 

the bottom level and the clusters are clearer. 

The classification of the pre-processed and filtered 

spectra leads to a good result; the outcome of classifying all 

five components in different groups is achieved with less 

than 5% misclassification. In Fig. 5 on the top level the 

clustering result of the whole valid frequency range is 

shown while the bottom level of Fig. 5 shows the clustering 

result of the distance measure proposed  by Definition 1. 

The latter produces higher inter-cluster distances, as 

visualized by the length of the edges but also classifies ASS 

and Salicylic acid close together, making it hard to 

distinguish these compounds. In terms of computational 

time, depending on the respective spectrum the number of 

minima varied between two and five. Therefore for each two 

spectra a maximum of ten frequencies is taken to calculate 

the distance. In comparison to that, for the usual distance 

calculation about 300 frequencies per spectrum are used.   

3.2. Imaging Data 

Two THz images are used here. The first is a plastic toy 

figure. The goal of a visualization should be to show the 

varying thickness of the figure. The second one is a 

measurement of an envelope containing chemicals as well as 

highly absorbing material. The different components should 

be made visible. In both cases the proposed pre-processing 

steps are applied and improve the visualization 

considerably. The above mentioned distance measure fails 

to reduce the dimensionality of the spectra as the majority of 

the spectra does not have characteristically absorbing peaks.  



0 20 40 60
0

10

20

30

40

50

60

70

80

90

100  

Amplitude of Signal

 

0 20 40 60
0

10

20

30

40

50

60

70

80

90

100
Clustered Spectra

 

Fig. 6. The left hand side shows the plot of the maximal amplitude 

in the time domain. The right hand side shows a clustering (of level 

three) of the pre-processed spectra. In addition to the contour of the 

figure, the different thicknesses can be seen. 

In Fig. 6 a 100x50 pixel measurement of he plastic toy 

figure is shown. The left hand side shows the main 

amplitude of the measured signals. The figure can be 

distinguished from the background by thresholding but the 

differences within the figure can not be determined by this 

simple approach. The right hand side of Fig. 6 shows a 

clustering of the transmittance spectra. The clustering is 

carried out over the whole valid frequency range. The 

visualization shows the result at level three, i.e. the first 

three branches of the tree graph are used. In comparison to 

the mere amplitude image a finer segmentation in 

foreground and background as well as in thin and thick parts 

of the material can be seen.   

 

 

Fig. 7. Visualization of the height of the maximum amplitude of 

each pulse. 

Fig. 7 shows a 38x76 pixel measurement of an envelope 

with different materials inside.  In Fig. 8 a first clustering 

with the main amplitude height and position as features can 

be seen. It is used to determine regions of interest and 

reduce the computational cost of transforming all the pixels 

to the frequency domain. Only using the time domain 

features for clustering is limited in quality as can be seen in 

Fig. 8 at the bottom by the bright red, bright blue, and green 

clusters which appear within objects as well as at borders of 

different objects.  

 

 

 

Fig. 8. Segmentation of the envelope by clustering with the 

amplitude height and position as features. The top shows a 

clustering at level two, the bottom one of the foreground at  level 

five.  

 Therefore, the named clusters as well as the yellow cluster 

are transformed to the frequency domain and clustered there. 

The result can be seen in Fig. 9. The top shows the 

visualization of the image and the bottom the respective 

spectra belonging to these clusters. The dark red part of the 

image contains the chemicals; this is clearly detected by the 

clustering. The corresponding spectra are presented in black 

at the bottom.  

 

Fig. 9. The cyan and dark blue pixels are clusters found by the 

previous time-domain-clustering (i.e. here they are not used). The 

grouping found by the spectral clustering at level three is 

presented. The bottom shows the transmittance spectra of these  

three groups. The dark red pixel correspond to the black spectra. 



 

4.  CONCLUSION AND FURTHER WORK 

In this paper it was shown that clustering algorithms are 

well applicable on THz data. With pre-processing and 

filtering, spectra of chemical compounds could be organized 

automatically. Especially in applications where the number 

of samples has high-volume, clustering is a useful tool. The 

pre-processing steps used here are windowing functions, 

spectral density evaluation and filtering methods. All of 

these steps improved the clustering result. The two 

compared filtering methods Savitzky-Golay smoothing and 

Wavelet shrinkage performed comparably well. Savitzky-

Golay filtering was chosen for the applications because of 

its computational efficiency. Wavelet shrinkage has further 

advantages that were not taken into consideration yet. Those 

are for example possibilities of dimension reduction and 

better peak preservation which can be more relevant for 

other compounds. The latter should be further investigated 

[11] as should be the possibilities of improving the 

clustering performance by using incremental methods [12, 

13].  

Clustering is particularly interesting in hyper-spectral 

THz imaging, where for a large number of measurements 

the significant information of the spectra has to be extracted 

and visualized automatically. Here the clustering was carried 

out on time-domain features as well as the frequency 

domain. The clustering presented enriched visualization 

possibilities in comparison with the traditional approaches 

which consider the sum over certain frequencies  or the main 

amplitude as features.  

The proposed distance measure improved the clustering 

of chemical compounds but was unstable when no 

characteristic peaks could be found within the spectra. The 

latter is typical for hyper-spectral images. Other approaches 

to finding relevant regions as for example using Wavelets 

should be considered. 

ACKNOWLEDGMENTS 

H.S. and B.H. thank the colleagues of the Department of 

Knowledge-Based Mathematical Systems at the JKU, 

especially Erich Peter Klement for discussion and support. 

K.W. and S.K. thank M. Koch and B. Scherger from the 

Institute for High-Frequency Technology, University 

Braunschweig, for their support in THz imaging and F. 

Katletz for providing samples. Part of this work has been 

supported by the BMWi German Federal Ministry of 

Economics and Technology (THESEUS program, use case 

ORDO) and the FFG Oesterreichische  

Forschungsfoerderungsgesellschaft (CIR-CE Project 

814906), the Austrian Science Fund (FWF), project number 

L-507-N20, the European Regional Development Fund 

(EFRE) and the federal state Upper Austria.   

REFERENCES 

[1] C.A. Schmuttenmaer, "Exploring dynamics in the far-

infrared with THz spectroscopy", Chemical Reviews, 104(4), 

pp. 1759-1780, 2004. 

[2] T. Warren Liao, "Clustering of time series data - a survey", 

Pattern Recognition, 38, pp.1857-1874, 2005. 

[3] J.G. Proakis and D.G. Manolakis, Digital signal processing: 

principles, algorithms, and applications, Prentice Hall, Inc. 

Upper Saddle River, NJ, USA, 2007.  

[4] P. Jepsen and B.M. Fischer, "Dynamic range in terahertz  

time-domain transmission and reflection spectroscopy", 

Optics Letters, 30(1), pp. 29-31,  2005. 

[5]  M. Golay and A. Savitzky, "Smoothing and differentiation of  

data by simplified least square procedures", Analytical  

Chemistry, 36, pp. 1627-1639, 1964. 

[6] F. Ehrenteich, SG. Nikolov, M. Wolkenstein, and H. Hutter,  

"The wavelet transform: A new preprocessing method for 

peak recognition of infrared spectra", Microchimica Acta, 

128(3), pp. 241-250, 1998. 

[7] S. Mallat, A Wavelet Tour of Signal Processing, Academic 

Press, 1999. 

[8] A.K. Jain, M.N. Murty, and P.J. Flynn, "Data clustering: a 

review", ACM Comput. Surv., 31(3), pp. 264-323, September 

1999. 

[9] R. Xu and D. Wunsch, "Survey of clustering algorithms",                    

IEEE Transactions on Neural Networks, 16(3), pp. 645- 678, 

2005. 

[10] P. Berkhin, "Grouping Multidimensional Data, chapter" , A 

Survey of Clustering Data Mining Techniques", pp. 25-71, 

Springer Berlin Heidelberg, 2006. 

[11] R.K.H. Galvão and T. Yoneyama, "A competitive wavelet 

network for signal clustering", IEEE Transactions on 

Systems, Man, and Cybernetics Part B, 34(2), pp. 1282- 

1288, 2004. 

[12] T. Zhang, R. Ramakrishnan, and M. Livny, "Birch: an  

efficient data clustering method for very large data bases", 

SIGMOD Rec., 25(2), pp. 103-114, 1996. 

[13] S. Guha, R. Rastogi, and K. Shim, "Cure: and efficient 

clustering algorithm for large databases",  Information 

Systems, 26(1), pp. 35-58, 2001. 


	PagNum2329: 2329
	ISBN2329: ISBN 978-963-88410-0-1 © 2009 IMEKO
	PagNum2330: 2330
	PagNum2331: 2331
	PagNum2332: 2332
	PagNum2333: 2333
	PagNum2334: 2334


