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Abstract − A Bayesian treatment of conjectured 

outlying observations is developed, using  the computational 
device of inverse probability. The device’s performance  is 
discussed in term of posterior probability of missed or false 
detections. The key role of prior probability is shown 
through a numerical example. 
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1.  INTODUCTION 

The problem posed by likely occurrence of outliers in 
measurement experiments has attracted a great deal of 
research long since [1], [2].  Attention is raised  by both 
theoretical and practical aspects: in fact, an unexpected 
experimental result might be announcing the discovery of an 
unforeseen phenomenon;  on the other hand, an outlier 
might  indicate a miscalibration or fault in instrumentation, 
or even a trivial reporting mistake. 

In the framework of statistical methods,  the use of a test 
to screen doubtful observations from a sample  implies 
handling  with care implicit assumptions that are likely 
subject to violations. Fundamental issues are involved too, 
for example [3]: how to maintain the hypothesis of 
randomness with application to a screened sample set; how 
to preserve conditions for  observations to be mutually 
independent, though related through the property of having 
resisted the screening test. 

The problem can be rather expressed in term of a 
treatment, rather than rejection, of outliers. For example, a 
weighted mean can be used to take into account presumptive 
outliers by assigning them weights close (or equal) to zero. 
However this points out that averaging is not always the best 
choice for estimating the expected value of a probability 
density function (pdf). The introduction of weighting factors 
supports the concept that all available information should be 
processed. 

In probability calculus, the acknowledgement of this 
concept is conveyed by use of conditional probabilities and 
prior probabilities according to the so-called Bayes rule. 

In the present paper, the problem of outliers  treatment is 
approached from such a Bayesian point o view [4]. 

The paper is organised as follows. 
In the next Section 2, the problem of outliers is set in the 

context of statistical hypothesis testing, based on Neyman-
Pearson method (see, e. g., [5]). In Section 3, this method – 
challenged by a long-standing dispute about apparent 

fallacies and misuse (a recent criticism  is detailed in [6]) – 
is contrasted with a Bayesian treatment. This treatment is 
here developed with application to a numerical example. 
Section 4 contains some concluding remarks. 

2.  POTENTIAL OUTLIERS AND HYPOTHESIS 
TESTING 

The problem of outliers detection can be modelled in the 
framework of statistical hypothesis testing. The hypothesis 
under scrutiny is that some values observed by sampling 
from a given population can be considered as probable 
outliers – with respect to the population’s pdf. 

In order to allow formal  definitions and related 
computations, a summary of basic concepts and 
technicalities is required. 

According to Neyman-Pearson method,  the rational for 
testing statistical hypotheses can be summarized as follows 
(see, e. g., [5]). 

Suppose that the observation of a random variable Z 
gives rise to a  set d={d1, …, dn} of results representing an 
n-dimensional data point in the sample  space Ω.  If a region 
ω of Ω is selected, an hypothesis can be formulated 
concerning the probability P that d belongs to  ω: )( ω∈dP . 
This can be called the null hypothesis H0, and  ω the critical 
region. 

In the simplest term, an alternative hypothesis H1 is 
introduced, concerning the probability )( ϖ∈dP that d 
belongs to the complementary region  ϖ of ω in the sample 
space: ϖ  is called the acceptance region. Here 
complementary region means that  the set-union of ϖ  and 
ω is the whole Ω,  while their set-intersection is the empty 
set; thus,  H0  and H1 are mutually exclusive and exhaustive 
over the hypotheses domain. 

The probability  value αω =∈ )H|( 0dP   is called the 
test size. It is also known as the level of significance 
(typically, α is pre-fixed at 5% or 1%, and the critical region 
is accordingly selected). 

More, putting βϖ =∈ )H|( 1dP , the probability value 
βω −=∈ 1)H|( 1dP  is called the power of the test of the 

(null) hypothesis H0 against the (alternative) hypothesis H1. 
In this framework, two types or errors may occur  in 

testing a statistical hypothesis: 
 
(I) it may be (with a probability α) wrongly 

rejected, when it is true; 



(II) it may be (with  a probability β) wrongly 
accepted, when it is false. 

 
As regards outliers, in principle the approach is to 

evaluate a test statistic (e.g. Grubbs test [1]) using suspected 
observations. Then, this statistic is compared with the 
corresponding theoretical distribution generated under the 
null hypothesis (H0) of unsuspected observations.  

To decide, H0 is rejected if the test result is excessively 
improbable (i.e., with a probability less than the significance 
level α). 

The standard practice for dealing with outliers [7]  
remarks  that rejection of aberrant observations should relay 
preferably upon physical – rather than statistical – grounds.  

It is worthwhile noting that the significance level is 
related to the probability of the data to belong to the critical 
region, given the null hypothesis: αω =∈ )H|( 0dP  (and 
the test power is related to the probability of the data to 
belong to the critical region, given the alternative 
hypothesis). 

As a matter of fact, it is also appropriate to evaluate  the 
test performance using the criterion of the inverse 
probability, that is the posterior probability of the hypothesis 
after data d have been observed. The posterior being 
computed by use of Bayes rule – this is also known as a 
Bayesian approach.  

3.  A BAYESIAN TREATMENT 

To develop a model of Bayesian testing for outliers, let 
the propositions H0 and  H1 represent two mutually 
exclusive and exhaustive hypotheses under test. Let the 
proposition  E state that the observed data belong to the 
critical region: E= ”“ ω∈d . In this term, the test size 

)H|( 0ω∈dP
(

 translates into , and the power of 
the test 

)H|E( 0P
)1H|ω∈dP  into . )H|E 1(P

In the following, given two propositional variables X, Y 
the product XY will denote their logical conjunction (“X 
and Y”), the sum X+Y their logical disjunction (“X or Y”), 
and ¬X logical negation (“not X”). 

In term of propositional  calculus, since H0= ¬H1, E can 
be partitioned into . 10 EHEHE +=

Thus, in term of calculus of probability:  
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Using Bayes rule: 
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It is clear that the posterior  may be lower, 

equal or greater than . In particular, it depends 

also on the prior ,  that is the probability of the null 
hypothesis before the observation is performed. Table 1 
shows some related figures.  
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Table 1.  Posterior probabilities P(H0|E) vs. P(E|H0). 

 
P(H0) P(H1) P(E|H1) P(E|H0) P(H0|E) 
0,50 0,50 0,95 0,05 0,05 
0,50 0,50 0,01 0,05 0,83 
0,90 0,10 0,05 0,05 0,90 
0,10 0,90 0,50 0,15 0,03 

 
Since the test is aimed at detecting outliers, the involved 

propositions can be instantiated as follows: 
 

• H0=“the observation is not an outlier”, null hypothesis; 
• H1=“the observation is an outlier”, alternative 
hypothesis; 
• E=“the test result is positive for a suspected outlier”, 
evidence. 

 
Thus, given H0 (respectively, H1), E means the test gives 

a wrong (respectively, a correct) result. Therefore 
 may be conveniently rewritten as  

and 
)H|E( 0P
|E(P

)wrong_test(P
st))H1 = . 

The posterior probability of an observation being not an 
outlier (H0) given the test result is positive for a suspected 
outlier (E) can be computed by application of Bayes rule: 
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After that, the posterior probability of an observation 

being an outlier (H1), given the test result is positive for a 
suspected outlier (E), is easily obtained by: 

 
)E|H(1)E|H( 01 PP −= .     (4) 

 
Beside  and  – that are 

test’s characteristics –, the prior probability of an outlier 
occurrence P(H

)wrong_test(P )stcorrect_te(P

1) is needed (since H0 = ¬H1, the other prior 
is just P(H0)=1–P(H1)) to compute Eq. (3). 

If, for instance, the observation process is likely prone to 
a 1% rate of outlying values, then: 

 
P(H1)=0,01;        (5) 

   
and: 

 
P(H0)=1–P(H1)=0,99.      (6) 

 
To retrieve a numerical example, let the test accuracy 

(i.e., the probability of correctly detecting a statistical 
outlier) be greater than 95%; this means, at least, a test 
power: 

 
    95,0)stcorrect_te(1 ==− Pβ .    (7)  



  
More, let the test specificity (i.e., the probability that a 

regular value will not be treated as an outlier) be around 
98%; this translates into a significance level fixed at: 

 
   02,098,01)wrong_test( =−== Pα .   (8) 
 
Putting these values in  Eq. (3) yields: 
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and, using Eq. (4): 

 
324,0)E|H(1)E|H( 01 ≈−= PP .       (10) 

 
Thus, the probability (≈32%) for a value to be an outlier 

– after the test has indicated it as a possible outlier – is very  
much lower than 95%  of  test power stated in Eq. (7). 

Of course, this result stems from the relationship that – 
given two X, Y– generally (except particular cases, such as 
P(H0|E)=P(E|H0)=0,05 reported in Tab. 1: first row) holds 
between relevant conditional probabilities: 

 
)X|Y()Y|X( PP ≠ .       (11) 
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4.  CONCLUSIONS 

In the Bayesian perspective, a novel approach to 
test performance evaluation can be developed with 
application to the problem of screening probable 
outliers from a sample of observations. 

To summarize, three propositions are statistically 
processed: 

H0=“the observation is not an outlier” (null 
hypothesis); 

H1=“the observation is an outlier”, (alternative 
hypothesis); 

E=“the test result is positive for a suspected 
outlier” (evidence). 

In Neyman-Pearson method, the test size, or 
significance )H|E( 0P=α , and the power of the test, 

)H| 1E(1 P=− β , are taken into account to estimate 
type I and type II errors likely affecting the test. 

In the Bayesian approach, instead: 
• posterior probabilities of hypotheses under test, 
P(H0|E) and P(H1|E),  are used for test performance 
criteria;  
• probabilities of type I and type II errors are 
processed in Bayes rule as intermediate factors 
P(E|H0) and P(E|H1); 
• however, prior probabilities P(H0) and P(H1)  are 
crucially needed – if unknown, they must be estimated 
–  to compute posteriors. 
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