
XIX IMEKO World Congress
Fundamental and Applied Metrology

September 6−11, 2009, Lisbon, Portugal

FLEXIBILITY EXPERIMENTAL TEST OF THE SOFTWARE FRAMEWORK
FOR MAGNETIC MEASUREMENTS AT CERN

Pasquale Arpaia1,2, Marco Buzio1, Vitaliano Inglese1,3

1 CERN, Dept. TE (Technology), Group MSC, Geneva, Switzerland

Marco.Buzio@cern.ch - Vitaliano.Inglese@cern.ch
2 Department of Engineering, University of Sannio, Benevento, Italy

arpaia@unisannio.it
3 Department of Electrical Engineering, University of Naples Federico II, Napoli, Italy

Abstract − The paper deals with the flexibility test of

software frameworks for measurement applications, and, in
particular, of the Flexible Framework for Magnetic
Measurements (FFMM), developed at the European
Organization for Nuclear Research (CERN) in order to
satisfy the new magnetic measurement requirements and to
provide a uniform platform to handle all magnetic
measurement applications. FFMM is designed to be flexible,
reusable, maintainable, and portable. As part of the
characterization of the framework from the point of view of
both software quality and performance, this paper presents a
metric suitable for its flexibility characterization.
Experimental results are also provided for typical
application scenarios of FFMM.

Keywords: Accelerator measurement systems; Software
development; Software flexibility.

1. INTRODUCTION

Flexibility, the modification easiness of a system or
component for use in applications or environments
different from the design [1], is definitely one of the most
desirable properties of any system to face changes in
operational environment during its life. This is
particularly true for software systems, both because they
are often subject to extremely rapid technological
development, and because some of them are specifically
conceived to be employed in environment spanning a
wide range of functional requirements, not fully
predictable at the design stage. Unfortunately, despite
their importance, flexibility and more in general software
quality, are often neglected in software design and
development.

This paper presents the work related to software
flexibility characterization carried out at the European
Organization for Nuclear Research (CERN). In the past
years, the test of the LHC (Large Hadron Collider)
superconducting magnets brought to incremental
development of software for magnetic measurements
with very strict requirements, without focusing on its
quality, namely flexibility and reusability. The end of the
series test on the LHC magnets marked a change in the

requirements: the need for more specialized measurement
applications to be performed on small-medium magnet
batches arose. As a consequence, a new platform was
required to span all magnetic measurement applications,
increasing the flexibility of the measurement stations, and
facilitating changes in the hardware configuration and
measurement conditions.

Conceptual work in this direction started in
cooperation with the University of Sannio, by analyzing
the state of the art [2]-[6], and subsequently by
developing the Flexible software Framework for
Magnetic Measurement (FFMM). The project was
presented in [7] as an object-oriented framework, and
further improved in [8] by exploiting an aspect-oriented
approach, more widely discussed in specific papers [9]-
[11]. Finally, a design of the framework kernel was
presented [12]. However, now after prototyping and
experimental applications, a comprehensive
characterization of software performance, in terms of
code quality and use flexibility is needed.

In this paper, a metric suitable for FFMM flexibility
characterization, as well as experimental results of tests
are illustrated for some typical application scenarios of
FFMM.

2. PROBLEM

The FFMM is a software framework for magnetic
measurement applications based on Object Oriented
Programming (OOP), and Aspect-Oriented Programming
(AOP) [13]. Its basic ideas and architecture are discussed
in [7], [11]. In particular, FFMM aims at supporting the
user in developing software for automatic measurement
systems by maximizing quality in terms of flexibility,
reusability, maintainability, and portability, without
neglecting efficiency, vital in actual test applications.
Moreover, the requirements for a wide range of magnetic
measurement applications, such as needed for the test of
superconductive magnets for particle accelerators, have
to be satisfied.

In Fig.1, the FFMM architecture is illustrated. A test
engineer (end user) produces a description of the
measurement application, User Script, whose semantic

and syntactic correctness is verified by the Script
Checker. Then, from the User Script, the Builder
assembles the Measurement Program, according to the
architecture of the Scheme by picking up suitable
modules from the Software Module Library. If some
modules are not available in the library, a template is
provided to the user (administrator user) in order to
implement them according to a suitable predisposed
structure. Once debugged and tested, the Measurement
Program will be stored in the Database in order to be
reused.

Even though the framework was designed to be
flexible, reusable, maintainable, and portable, so far a
comprehensive approach to the statement of the
fulfilment of these project goals is still missing.

As part of a wider work aimed at the characterization
of the framework from the point of view of both software
quality and performance, the purpose of this paper is to
quantify, through the introduction of suitable metrics, the
degree of flexibility achieved by the current release 3.0 of
FFMM.

3. PROPOSAL

Classic and contemporary literature in software
design recognize the central role of flexibility in
software design and implementation. Structured design,
modular design, object-oriented design, software
architecture, design patterns, and component-based
software engineering, among others, seek to maximize
flexibility.

During its life cycle, a software system is forced to
face variable requirements. As a consequence, in the
process of maintenance and improvement, often the
implementation has to be adapted to provide a solution
to problems in new application domains. An evolution
step is defined as the unit of evolution with relation to a
particular change in the implementation.

It has been observed that predicting the class of
changes is the key to understanding software flexibility.
During the phases of design and development of the
software, initially the changes that are likely to occur
over the lifetime of the product are characterized . Since

it is impossible to predict the actual changes, the
predictions will be about classes of changes [14].

The notion of evolution step can be used for
estimating software flexibility [15]: a is more flexible
than b towards a particular evolution step if the number
of changes required for a is smaller than the number of
changes required for b. Thus, the complexity of an
evolution step measures how inflexible the
implementation is towards a particular class of changes:
the less changes are required, the more flexible it is.

It is therefore useful to organize the software so that
the items that are most likely to change are confined to a
small amount of code, so that if those things do change,
only a small amount of code would be affected [14]. In
other words, flexibility (measured in terms of the cost of
the evolution process) is directly linked to the amount of
code that is affected. Thus, a first approximation to
measuring the cost of executing an evolution step ε is
given by the evolution cost metric which counts the
number of modules that are affected by ε. Under the
assumption that the costs of adding, removing, or
changing each modular unit commensurate, the evolution
cost metric can be obtained by calculating the number of
modules that were added, removed, or adjusted as a
result of the evolution. This number is obtained by
calculating the symmetric set difference between the sets
of classes in the old (iold) vs. the adjusted (iadjusted)
implementations. Formally [15]:

 ()() () ()Classes old adjustedC Classes i Classes iε = − U

 ()() ()adjusted oldClasses i Classes i− (1)

This evolution cost metric is inadequate in some
situations: when the evolution of different modules do
not commensurate, when the modules are not
implemented yet, and when the programming language
does not support classes at all or adds other
programming units (as in the case of AOP). It is
therefore necessary to accommodate the metric for
varying degrees of modular granularity, as well as for
varying degrees of information on each module. This
leads to the definition of the generalized evolution cost
metric [15]:

Fig. 1. The FFMM architecture.

(,)

() ()
old adjusted

Module m Modules i i
C mμ ε μ

∈Δ
=∑ (2)

where ΔModules(iold, iadjusted) is the symmetric set
difference between the set of modules in iold and the set
of modules in iadjusted. The generalized metric is
parameterised by the variables Modules and μ: Modules
represents any notion of module that is appropriate for
the circumstances, such as class, procedure, method,
aspect, and package; μ represents any software
complexity metric that is meaningful with relation to a
particular module m. Finally, it is to be pointed out that
evolution complexity is a measure of growth, not an
absolute value, and therefore it does not measure the
actual cost of the evolution process but how it grows.

4. EXPERIMENTAL RESULTS

The proposed approach to flexibility assessment is
applied at CERN in the context of the Flexible
Framework for Magnetic Measurement [7]-[12]. The
platform was designed in order to satisfy the
requirements for a wide range of magnetic measurement
applications, thus the most probable scenarios it will have
to face are the different techniques currently used for the
test of magnets for accelerator, besides those that could
be developed in the future. As said before, the framework
is based on OOP and AOP, therefore the modules
involved in these scenarios are methods, classes and
aspects.

In a preliminary analysis phase, the classes of changes
due to the different measurement techniques were
classified as: (i) adding/modifying software modules
implementing the devices, (ii) changing the strategies for
handling the services provided by the framework (fault
detection, logging, synchronization), (iii) implementing
new measurement algorithms. The abovementioned
classes of changes involve different users of the
framework, namely (i) and (ii) the developer and (iii) the
test engineer.

In the following, some preliminary results of the
flexibility assessment are illustrated. The tests were
carried out at CERN on the release 3.0 of FFMM for
different measurement methods. The experimental results

are summarized in Tab. 1. The generalized evolution cost
metric is obtained by fixing µ = CC (Cyclomatic
Complexity [16], a measure of the number of linearly
independent paths through a program's source code and
therefore of its logical complexity), thus yielding the
metric CC

ModulesC . This metric is used to compare the degree
of flexibility of the different classes of changes, and not
as an absolute measure of flexibility. A high cyclomatic
complexity (>10 [17]) denotes a complex procedure that
is hard to understand, test and maintain. Therefore, the
lower the cyclomatic complexity (and consequently

CC

ModulesC), the higher the flexibility.

4.1. Adding/modifying a device
When new devices are required by the measurement

application, it is not possible to completely avoid the
effort for their implementation. In this case the flexibility
is therefore intrinsically limited. Nevertheless FFMM is
fairly flexible towards this class of changes, since it helps
the user effectively develop the new components.
Namely, it provides services, such as event handling and
fault detection [12], [18], whose infrastructure is easily
accessible and whose implementation is customizable
with limited effort.

The possible changes at device level can be classified
as (i) adding the device into the framework from scratch,
and (ii) modifying it to satisfy new requirement when it
already exists, by adapting its interface or some method
implementation.

The cost of adding a new device strongly depends on
its size. Formally, rather than through the lines of code
(LOC), this cost can be expressed as the sum of the
cyclomatic complexity of all its methods, including
additional code devoted to events and faults handling,
and computed as the average cyclomatic complexity of a
software unit (method) multiplied by the number of units
implemented. The generalized evolution cost metric
results therefore proportional to the number of member
functions, events and faults of the new class (Tab. 1). The
member functions of the class are likely to be more
complex than the methods handling events and faults,
thus the generalized evolution cost metric usually

Fig. 2. Encoder Board class hierarchy.

depends more on the former set of functions.
If a class interface has to be modified, for example by

adding/removing a method, the change will involve many
modules since typically a device is part of a hierarchy of
classes in a generalization relationship [7]. The effort to
add/remove a method is fixed and determined by its own
complexity, thus the growth of the evolution cost metric
depends only on the depth of the inheritance hierarchy
(Tab. 1). In the design phase of FFMM the maximum
depth was kept to a reasonable value (4), so this class of
changes requires a limited effort.

The evolution cost estimation strongly depends on the
device considered. In order to provide a quantitative
example, in the following the driver for an Encoder
Board, developed at CERN and employed in different
scenarios typical of the magnetic measurements [12], is
taken into account. The device is part of the hierarchy of
classes shown in Fig. 2. Adding the device requires a
considerable programming effort, anyway FFMM
provides support in the following ways: it provides
libraries implementing communication features on
different buses, so that all the required functionalities are
already available and accessible through a suitable
interface. Furthermore, FFMM already implements and
makes available infrastructures for event handling and
fault detection. The tasks of exploiting events and
improving system fault tolerance are therefore extremely
simplified for the user. He just needs to add few small
modules to extend the event structure and the fault
detection logic. The generalized evolution cost metric,
computed as the sum of the total cyclomatic complexity
of the modules to be added, has a value of 301 in the
particular case considered.

4.2. Changing service strategies
FFMM provides many services to help the user

employ the framework and enlarge its application
domain. The choice of OOP reduces the number of
modules affected by possible changes, thus assuring a
good level of flexibility. Moreover, some services, for
example the fault detection [18], were implemented by
means of AOP. By this solution, the classes of FFMM are
oblivious of triggering the execution of specific code in
the related aspects providing the services. Classes and
aspects are therefore completely decoupled, further
increasing software flexibility. Namely, a change of the
fault detection strategy typically involves only one
module, without affecting in any way the corresponding
device. The complexity of such a change can be
estimated as the average complexity of a fault handling
method multiplied by the number of methods to be
modified, and is therefore proportional to the number of
faults involved in the change (Tab. 1).

To provide a quantitative estimation, for the fault
detection code specific of the Encoder Board one gets

4CC

ModulesC = , while for fault detection code common to

other devices one gets 25CC

ModulesC = , for a total
generalized evolution cost of 29.

4.3. Implementing new measurement algorithms
Several measurement techniques are currently

employed for the test of accelerator magnets, among
which fixed and rotating coils, stretched wire. As an
example, the rotating-coil-based measurement station
employed at CERN to test the quadrupoles of the new
linear accelerator Linac4 [19] is shown in Fig. 3.

FFMM was designed to reduce drastically the amount
of code affected by modification to the measurement
procedure. As said before, the test engineer interacts with
the framework mainly through the User Script, a formal
description of the measure he wants to be executed. All
the changes required by a new measurement algorithm
are focused in the User Script, without affecting any
other modules. In this case the framework is therefore
provides the highest degree of flexibility, with

0CC

ModulesC = . This result was proven experimentally by
developing from scratch an application for permeability
measurements [20] by means of devices already
developed and previously employed for rotating coil
benches.

5. CONCLUSIONS

In this paper, an approach for the software flexibility
assessment of measurement frameworks is proposed. In

Fig. 3. Test bench for the quadrupoles of Linac4.

Table 1. Generalized evolution cost metric for different classes of changes in FFMM.

Class of change User involved CC
ModulesC

Increasing
flexibility

Add device Developer # methods,events,faults∝
Change device interface Developer depth inheritance hierarchy∝

Change fault detection strategy Developer # faults involved∝
Change measurement procedure Test engineer 0

particular, this approach is meant to be applied in the
context of the Flexible Framework for Magnetic
Measurement (FFMM), developed at CERN in
cooperation with the University of Sannio.

FFMM was designed to be flexible, reusable,
maintainable, and portable. Now, a complete release of
FFMM is available and already proved its effectiveness
on the field, thus the evaluation of its degree of
flexibility starts a new comprehensive phase of software
quality and performance characterization, aimed at
stating the fulfillment of challenging project goals.

The flexibility of the system cannot be stated in
absolute terms, but only with respect to specified classes
of changes, involving different users. The results
highlight that the framework achieves increasing degrees
of flexibility moving from the programming level to the
user script level, and at the same time from the point of
view of the developer to that of the test engineer. The
highest flexibility is attained for the changes involving
the measurement procedure, namely at the level where
flexibility was mainly required.

ACKNOWLEDGEMENTS

This work is supported by CERN trough the
agreement LHC/AT/K1464 with the University of
Sannio, whose support authors gratefully acknowledge.
Authors thank Giuseppe La Commara for his useful
suggestions.

REFERENCES

[1] IEEE. Standard Glossary of Software Engineering
Terminology 610.12-1990, Vol. 1. Los Alamitos: IEEE
Press, 1999.

[2] http://zone.ni.com/devzone/cda/tut/p/id/3238#toc0
Designing Next-Generation Test Systems Developers
Guide.

[3] J. M. Nogiec, J. Di Marco, S. Kotelnikov, K. Trombly-
Freytag, D. Walbridge, M. Tartaglia, “Configurable
component-based software system for magnetic field
measurements”, IEEE Trans. On Applied
Superconductivity, Vol. 16, N. 2, Jun. 2006, pp. 1382-
1385.

[4] http://www.tango-controls.org/
[5] P.C. Ferreira, H. Reymond, “Sequence of tests and

settings to start a magnetic measurement on MMP
6.5.0”, Internal note EDMS no. 399822, CERN 2003.

[6] A. Guerrero, J-J Gras, J-L Nougaret, M. Ludwig, M.
Arruat, S. Jackson, “CERN front-end software
architecture for accelerator controls”, Proceedings of
ICALEPCS2003, Gyeongiu, Korea, 2003.

[7] P. Arpaia, L. Bottura, M. Buzio, D. Della Ratta, L.
Deniau, V. Inglese, G. Spiezia, S. Tiso, L. Walckiers,
“A software framework for magnetic measurement at
CERN”, Proc. of IEEE Instrumentation and
Measurement Technology Conference, Warsaw,
Poland, May 1-3 2007.IMTC 07.

[8] P. Arpaia, L. Bottura, V. Inglese, G. Spiezia, “A
flexible framework for magnetic measurements at
CERN: a prototype for the new generation rotating
coils”, Proc. of 15th IMEKO TC4 Symposium, Iasi,
Romania, Sept. 19-21 2007.

[9] P. Arpaia, M. L. Bernardi, G. Di Lucca, V. Inglese, G.
Spiezia, “Fault Self-Detection of Automatic Testing
Systems by means of Aspect-Oriented Programming”,
Proc. of 15th IMEKO TC4 Symposium, Iasi, Romania,
Sept. 19-21 2007.

[10] P. Arpaia, L. Bottura, V. Inglese, G. Spiezia, “The new
flexible platform for magnetic measurements at
CERN”, (In Italian), GMEE 07, Torino, Italy, Sept. 5-8
2007.

[11] P. Arpaia, L. Bottura, V. Inglese, G. Spiezia, “On-field
validation of the new platform for magnetic
measurements at CERN”, Measurement, Volume 42,
Issue 1, January 2009, Pages 97-106, ISSN 0263-2241,
DOI: 10.1016/j.measurement.2008.04.006.

[12] P. Arpaia, M. L. Bernardi, L. Bottura, M. Buzio, L.
Deniau, G. Di Lucca, V. Inglese, J. Garcia Perez, G.
Spiezia, L. Walckiers, “Kernel Design of a Flexible
Software Framework for Magnetic Measurements at
CERN”, Proc. of the Instrumentation and Measurement
Technology Conference, IMTC 2008, 12-15 May 2008
Page(s):607 – 611.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Videira Lopes, J.M. Loingtier, J. Irwin, “Aspect-
Oriented Programming”, in Proc. of the 11th European
Conf. on Object-Oriented Programming (ECOOP),
Vol. 1241, pp. 220-242, Springer-Verlag, 1997.

[14] D.L. Parnas. “Software Aging.” Proc. Int’l Conf.
Software Engineering—ICSE (May 1994), pp. 279–
287. Los Alamitos: IEEE Computer Society Press.

[15] A. H. Eden, T. Mens, “Measuring software flexibility”,
IEE Proc.Softw., Vol. 153, No. 3, June 2006, pp. 113-
125.

[16] McCabe. A Complexity Measure. IEEE Transactions
On Software Engineering, Vol. Se-2, No. 4, December
1976, pp. 308-320.

[17] International Standard ISO/IEC 9126, “Information
technology - Software product evaluation - Quality
characteristics and guidelines for their use”,
International Organization for Standardization,
International Electrotechnical Commission, Geneva,
1991.

[18] P. Arpaia, M. L. Bernardi, G. Di Lucca, V. Inglese, G.
Spiezia, “An Aspect Oriented Programming-based
approach to software development for measurement
system fault detection”, in press on Computer
Standards & Interfaces.

[19] The Linac4 Project, “Technical Description for the
Permanent Magnet Quadrupoles for Linac4”, Internal
note EDMS no. 950248, CERN 2008.

[20] K. N. Henrichsen, “Permeameter”, Proc. 2nd Int. Conf.
On Magnet Technology, Oxford, 1967.

	PagNum871: 871
	ISBN871: ISBN 978-963-88410-0-1 © 2009 IMEKO
	PagNum872: 872
	PagNum873: 873
	PagNum874: 874
	PagNum875: 875

