
XIX IMEKO World Congress
Fundamental and Applied Metrology

September 6−11, 2009, Lisbon, Portugal

AUTOMATICALLY-GENERATED USER INTERFACES FOR
MEASUREMENT SOFTWARE FRAMEWORKS:

A CASE STUDY ON MAGNETIC PERMABILITY AT CERN

Pasquale Arpaia1,2, Marco Buzio2, Lucio Fiscarelli1,2, Vitaliano Inglese1,3, Giuseppe La Commara1

1 Dipartimento di Ingegneria, Università del Sannio, Benevento, Italy, arpaia@unisannio.it

2 Dept. of Technology, Group of Magnets Superconductors Cryostats, CERN, Geneva, Switzerland,
{marco.buzio-lucio.fiscarelli-vitaliano.inglese}@cern.ch

3 Dipartimento di Ingegneria Elettrica, Università degli Studi di Napoli – Federico II, Napoli, Italy

Abstract − A technique for generating user interfaces in

software frameworks for automatic measurement systems is
proposed. The user interface is separated from the
application logic with the aim of enhancing flexibility and
reusability of the software. A Model-View-Interactor
paradigm focuses on the “interaction” between the
automatic measurement system, executing test script written
by a test engineer, and the application user. This approach
has been applied to the flexible software framework for
magnetic measurements at the European Organization for
Nuclear Research (CERN). Experimental results on the
application of the proposed technique to a case study of
permeability measurement are reported.

Keywords: software measurement systems, magnetic
measurements, automatic test equipment (ATE)

1. INTRODUCTION

In the industrial area, the need for software products,
supporting users in developing measurement applications is
increasing progressively. Building measurement test utilities
through the suitable assistance of a specific framework
allows resources to be saved during the development stage
as a whole.

At CERN, the European Organization for Nuclear
Research, the design and the implementation, first of the
Large Hadron Collider (LHC) and now of the LINAC4
accelerator, has required a big effort to test the high
performance magnets and stimulated new requirements for
magnetic measurement software [1]. In cooperation with the
University of Sannio, the Flexible Framework for Magnetic
Measurements (FFMM) was designed to satisfy a wide
range of measurement demands and to integrate more
performing flexible hardware [2]. FFMM software
applications can pilot several devices, such as encoder
boards, digital integrators, motor controllers, transducers,
and so on, as well as synchronize [3]-[4] and coordinate
different measurement tasks and actions [5]. Such as the
new generation of measurement frameworks [6], in addition
to satisfy all the functional requirements, FFMM has to

provide tools to generate the Graphical User Interface (GUI)
automatically [7].

During the development of a measurement application
through a software framework [1] in a first phase, the Test
Engineer describes the measurement process formally by a
suitable script [11]. From this input, the framework
generates an executable measurement application as output.
In a second phase, the Application User executes the
measurement application, interacts with the system at
runtime, by providing the required input and by configuring
the hardware setup, and finally starts the measurement
process on the devices.

As for most interactive applications, producing an
attractive GUI for a measurement software framework is not
an easy task. The powerful GUI libraries offered by the
operating system can be used of course, but the offered level
of abstraction is rather low in general. Therefore, a visual
editor, such as offered by many commercial programming
environments [8], should be used. Such tools turn out to be
very user-friendly at the expense of offering limited
functionality. Inherently, graphical representations
depending on run-time data cannot be drawn in advance.
Summarizing, a visual editor is a useful tool for simple GUI
applications, but for more complicated ones, the Test
Engineer still has to struggle with low-level programming
code. In addition, the quality of manual GUI development
depends strongly on the experience of the designers and
their skills in the platform and development tools.

User interface generation has been the subject of
research for many years, sometimes under the name of
model-based user interfaces generation [8]. In fact,
interfaces are generated by dividing the application domain
in models. The main goal of automatic techniques for
generating interfaces is to allow the designer to specify them
at a very high level, with the details of the implementation
to be provided by the system [9].

Nevertheless, this approach is very unspecific and a
further effort is required to tailor the model to a definite
context, such as in frameworks for measurement software
applications.

In this paper, an evolution of model-based user interface
generation for a measurement software framework, the

Model-View-Interactor paradigm, shifting the test Engineer
from designing interfaces to designing interactions, is
proposed. The practical goal is to allow programmers, as
Test Engineers, who are not typically trained to design
interfaces, to produce easily good GUIs for their
applications. Designing interaction rather than interfaces
attempts to control the quality of the interaction between
user and computer, according to the main paradigm that
“user interfaces are the means, not the end” [10].

2. THE MODEL-VIEW-INTERACTOR PARADIGM

The proposed approach to the generation of interfaces in
measurement system frameworks starts from a fundamental
consideration: usually Test Engineers are not trained to
design interfaces, but at the same time they would like to
maintain a high level of usability in measurement
applications. They are responsible for preparing Test Scripts
[2], where the interaction between Measurement Application
and final user are described at high level [11], without any
indication of GUI aspects.

Therefore, the main concept underlying the proposed
approach is the interaction. Interaction is a kind of action
occurring when two or more objects have an effect upon one
another. Examples of simple interaction in measurement
software are reading an user input, or displaying a value.

To avoid that Test Engineers have to deal with raw
graphical characteristic of software measurement system,
the proposed architecture is organized through a three-way
decomposition, by separating functional from look aspects
of the interface: (i) the parts representing the model of the
underlying application domain, (ii) the way the model is
presented to the user, and (iii) the way the user interacts
with it.

This proposal is called the Model-View-Interactor
approach (Fig.1), derived as an evolution of the model-
based approach [7] [8].

The Model is composed by the data structures and the
classes of the framework involved in the GUI generation
and subject to change by them. Typical example is offered
by the device classes concerned to the configuration step of
the measurement procedure.

Fig.1. MVI Architecture.

The View consists in the aspect of the generated GUI,
defined by the GUI expert in the View Description, a XML-
file containing all the presentation features of the GUI and
handled by a XML Parser, completely transparent to the
Test Engineer using the framework. In particular, the user
interfaces content may be organized in rectangular areas, or
areas suitably described by a rectangular bounding shape
(referred here as boxes). Graphical user interface layouts can
be seen as a container subdivided in boxes, where graphic
components (text editor component, buttons, menu item, and
so on) are placed. A box can contain others boxes, and so
on. A Layout Manager is responsible to arrange all the
components in the resulting form [12].

The Interactor represents the tie between model and
view, by making available different components specifying
the GUI desired behaviour. In the measurement script
writing phase [11], the Test Engineer defines the component
contained in the GUI and the type of input/output data by
means of the Interactive Components. Then, after the
building process of the script made by the DSL-Xpand
component, the framework is able to generate the
application with the desired the GUI.

In this way, the Test Engineer can define the interaction
Measurement Application-User by means of the Interactor
Component objects only.

3. THE GUI ENGINE

The main aim of the proposed Model-View-Interactor
Paradigm is to permit the Test Engineer to develop GUI
applications by a minimal effort and without graphical
knowledge. This aim is achieved mainly through the
GUIengine structure (Fig.2), allowing all the GICs (Graphic
Interactor Components), encapsulating all common aspect of
graphical components [13] [14], to be built.

The GUI engine architecture is composed by several
classes: (i) GIC, providing to TestManager the input/output
features without graphical details, (ii) GenericWindow,
giving the interface for all the frames, (iii) InputWindow and
OutputWindow, the concrete windows, and (iv)
LayoutManager, responsible for instantiating concrete
windows defining the graphical features parsing the View
Description file and computing the dimension and position
parameters [12]. The View is kept clear-cut from the
Interactor by implementing the GUIengine complying with
the Abstract Factory Pattern, often employed to separate the
details of GUI implementation from its general use.

Fig.2. Abstract Factory Pattern for the GUIengine.

MVI APPROACH

DSL Script
“INTERACTOR”

XML
Description
“VIEW”

DSL

Xpand

XML

Parser

FFMM CORE

“MODEL”

GUI

FFMM

Classes

GUI

Engine

Fig.3. Final form aspect.

As an example, if the Test Engineer needs for asking as
input a integer value at runtime, he will use the capture()
method of GIC object in the measurement script [1]:

int a;
gic.capture(a,1,"Input form:","value");

By inserting in the script only this instruction, a form is
displayed (Fig.3), and the value entered by the user is stored
in the variable pointed.

4. EXPERIMENTAL RESULTS

The Flexible Framework for Magnetic Measurement
(FFMM) is a software platform under development at
CERN in cooperation with the University of Sannio [1], [5].
FFMM is aimed at generating in a systematic way all the
measurement software applications for testing the particle
accelerator magnets.

In the following, (i) the case study of magnetic
permeability measurement, and (ii) the measurement results
are reported.

4.1. Case Study of Magnetic Permeability Measurement
The proposed case study is aimed at illustrating how the

proposed approach supports Test Engineers in generating
the GUI automatically for a measurement procedure based
on the methods of the split-coil permeameter (Fig. 4) [15].

The split-coil permeameter (Fig.5) is composed by two
coils wound in a toroidal shape, that can be opened allowing
to wrap a toroidal specimen. One coil is to excite the field
and the other one to capture the flux.

A PC, hosting the FFMM Automatically-generated User
Interface (AUI), is linked to a DAQ [18], in order to control
the Voltage Controlled Power Supply of the excitation coil
by the analog output.

Fig.4. Permeameter bench

Fig.5. The split-coil permeameter.

A PXI crate containing:
• two CERN FDI (Fast Digital Integrator), a CERN

proprietary PXI board general-purpose digitalization
board, configured for the coil signal acquisition and
numerical integration [2],

• a CERN Encoder board, a CERN proprietary PXI board,
for managing the encoder pulses and feeding the trigger
input of a digital integrator,

is also linked to the PC and used to acquire, through the
FDIs, the value of the excitation current, the relative flux,
and the trigger generated by the Encoder Board (Fig.4).

The measurement algorithm is composed by the
following steps:

1) setup of all the device needed in the procedure;
2) demagnetization of the specimen [15];
3) start the acquisition of flux and current;
4) start the generation of the signal controlling the

power supply;
5) wait for the reaching of the selected maximum

current value;
6) stop the acquisition.

This procedure is codified in the application script and
processed by the FFMM framework in order to produce
executable file.

5.2. Measurement Results
To setup the devices involved in the measurement

procedure, the AUI features of FFMM are used.
As an example, at the beginning of the measurement

script, the Test Engineer needs to configure the FDIs: the
number of FDI and their bus are required to start the
acquisition. Thus, the Test Engineer puts in the script the
following statements:

gic.capture(numFDI,1,"Parameter Request:","number of FDI");
gic.capture(bus, numFDI,"Parameter Request:","FDI bus");

Then, during the application execution, the forms are
generated. In Fig.6, the examples of the GUI generated
correspondingly are shown.

A steel specimen was tested and, according to the
procedure explained in [15], the permeability characteristic
curve may be obtained by analysing the data.

For validating the Automatically-generated User
Interface by Model-View-Interactor paradigm, inn Fig. 7,
the hysteresis curve, obtained by plotting the flux versus the
feed current, is reported.

Fig.6. FDI configuring forms.

5. CONCLUSIONS

The Model-View-Interactor paradigm for Automatically-
generated User Interface was proposed. The main purpose of
this technique was to allow Test Engineers using FFMM to
produce easily the GUI for their measurement applications.
A complex and realistic case study, the magnetic
permeability measurement, was treated and both the
graphical and the measurement results were shown.

REFERENCES

[1] P. Arpaia, L. Bottura, M. Buzio, D. Della Ratta, L. Deniau,
V. Inglese, G. Spiezia, S. Tiso, L.Walckiers, “A software
framework for flexible magnetic measurements at CERN”,
in Proc. of IEEE IMTC 07, Warsaw, Poland, May 2007.

[2] P. Arpaia, A. Masi, G. Spiezia, “A Digital Integrator for Fast
Accurate Measurement of Magnetic Flux by Rotating Coils”,
IEEE Transactions on Instrumentation and Measurement,
Vol. 56, No. 2, April 2007.

[3] P. Arpaia, M. Bernardi, G. Di Lucca, V. Inglese, G. Spiezia,
“An Aspect Oriented Programming-based approach to
software development for measurement system fault
detection”, in press on Computer, Standards & Interfaces.

[4] P. Arpaia, M. Bernardi, G. Di Lucca, V. Inglese, G. Spiezia,
“Aspect Oriented-based Software Synchronization in
Automatic Measurement Systems”, Instrumentation and
Measurement Technology Conference Proceedings, 2008.
IMTC 2008. IEEE Volume , Issue , 12-15 May 2008
Page(s):1718 – 1721.

[5] P. Arpaia, L. Bottura, V. Inglese, G. Spiezia, “On-field
validation of the new platform for magnetic measurements at
CERN”, Measurement, Vol. 42, No. 1, January 2009, Pages
97-106.

[6] J. Bosch, “Design of an Object-Oriented Framework for
Measurement Systems” Domain-Specific Application
Frameworks, M. Fayad, D. Schmidt, R. Johnson (eds.), John
Wiley, ISBN 0-471-33280-1, 1999, pp. 177-205

[7] K. Stirewalt, S. Rugaber, “Automating UI Generation by
Model Composition”, submitted to: Automated Software

Engineering (ASE ’98) 13th IEEE International Conference,
1998 .

[8] B. Mayers, S.E. Hudson, R. Pausch, “Past, Present and
Future of User Interface Software Tools” ACM Trans.
Computer-Human Interaction, vol. 7, no.1, pp 3-28, March
2000.

[9] T. P. Browne et al., “Using declarative descriptions to model
user interfaces with MASTERMIND”. In F. Paternò and P.
Palanque editors, Formal Methods in Human Computer
Interactions, Springer-Verlag, 1997.

[10] M. Beaudouin-Lafon, “Interactions as First-class Objects”
In Proceedings of the ACM CHI 2005 Workshop on the
Future of User Interface Design Tools. ACM Press 2005.

[11] P. Arpaia, M. Buzio, L. Fiscarelli, V. Inglese, G. La
Commara, “Measurement-Domain Specific Language for
Magnetic Test Specifications at CERN”. Proc. I2MTC09,
Singapore, May 5-7, 2009.

[12] C. Lutteroth, G. Weber, “Modular Specification of GUI
Layout Using Constraints”, Proceedings of ASWEC 2008 -
19th Australian Conference on Software Engineering, IEEE
Press, 2008.

[13] P. Achten, M. van Eekelen, and R. Plasmeijer,
“Compositional Model-Views with Generic Graphical User
Interfaces”. In Practical Aspects of Declarative
Programming, PADL04, volume 3057 of LNCS, Springer,
2004.

[14] P. Achten, M. van Eekelen, and R. Plasmeijer, “Generic
Graphical User Interfaces”. In Greg Michaelson and Phil
Trinder, editors, Selected Papers of the 15th Int. Workshop
on the Implementation of Functional Languages, IFL03,
volume3145 of LNCS. Edinburgh, UK, Springer, 2003.

[15] K. N. Henrichsen, “Permeameter”, Proc. 2nd Int. Conf. on
Magnet Technology, Oxford, 1967.

[16] http://sine.ni.com/nips/cds/view/p/lang/en/nid/1037

Fig.7. Flux vs current hysteresis curve.

	PagNum429: 429
	ISBN429: ISBN 978-963-88410-0-1 © 2009 IMEKO
	PagNum430: 430
	PagNum431: 431
	PagNum432: 432

