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Abstract − The paper describes some problems 

connected to the reference data set generation for the 
validation of metrological software. The validation concerns 
the Gaussian procedures for solving the task of the 
approximation of geometric features.  
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1.  INTRODUCTION 

The validation of metrological software raises a number 
of questions but cardinals are three of them. First one is who 
shall perform the validation after software has been 
developed. The next problem relevant to this is what 
particular requirements shall be formulated if no knowledge 
about the target software use. And the latter is what the 
methods should be suitable in software examination.  

Common approach to first question is commission to 
validation from such bodies as PTB (Germany) or NPL 
(UK) national laboratories developing special testing 
services. But alternative premise to the first question seems 
to be a recommendation of ISO standard [1] to undertake 
own-self software validation by accreditation bodies. 
Additionally, ISO standard [2] addressed to coordinate 
metrology provides the strategy and the extent, i.e. number 
of test cases, to which the key components of CMM’s 
software, the Gaussian procedures, shall be tested. One 
drawback of this approach is that undertaking validation one 
needs to solve two latter questions.  

2. TO ENFORCE ISO STANDARD  

In [2] two methods of testing are recommended: testing 
applying the reference software or testing by producing the 
reference data sets. In the first method reference software 
and software under test are applied to the same data set. The 
returned results are then compared to each other by 
computing an absolute value of the difference. The basic of 
second approach is however designing the reference data 
sets as software inputs, i. e. direct measured quantities 
values, and reference values respectively. The outcomes of 
software subject testing, indirect measured output quantities, 
after applying the reference data sets are compared with 
corresponding reference values, like in the method before, 
which allows establishing if there are no essential 
discrepancies between them. The methods recommended by 

standard are easy when we have at our disposal reference 
software or reference results. In the case of lack of it we had 
to develop other concepts. Using so-called reference pairs 
[3] in such a way that the other principles of validation are 
fulfilled leads to the creation of appropriate data error model 
being in fact the statistical model of variables for data 
simulations. Model error building is crucial issue with 
regard to valid inference about quality of results of 
evaluated software.  

3. ERROR MODEL DUE TO ISO 

Although the points produced according to ISO 
algorithm are located seemingly at uniform pattern nodes of 
nominal feature segment they are distributed approximately 
regularly. The randomisation used in order to extract the 
locations of points conforms to the rule of probing strategy 
“ad hoc”. In accordance to standard [2] measured object 
influences and experiment influences are realized in data 
generator through disturbing the nominal data on object 
having ideal geometry by form deviations and Gauss noise.  

The ground assumption of deviations generating is that 
they should be projected on nominal area perpendicularly 
that guarantees that the reference values can be considered 
as known a priori. The assumption is derived from known 
properties of Gauss-Newton local solution.  

In the context of validation however testing the software 
for checking its fitness for purpose requires forming the data 
for particular application domain. First of all they should be 
representative and have properties imitating the typical 
actual measurement data gathered in typical environment 
conditions from typical machined surfaces, i. e. they should 
be determined for “intended use” of software.  

4. DESIGNING THE DATA 

Respecting above demands we propose designing the 
data in more natural, corresponding with reality, manner.  

Following Forbes: “Understanding the inexactness or 
uncertainty associated with the measurement result arising 
from uncertainty associated with the input data is a key 
activity in metrology...” – very important seems identifying 
the factors which data are subject to. 

The universal measurement task realized for geometric 
features by Gaussian software consists of two stages: 



assessing the estimates of measured quantities, following 
collecting a set of input data, Fig.1.  

Applying this consideration one reduces a number of 
potential sources of inaccuracy into two main factors 
affecting the results: associated with each program quality, 
i.e. mainly due to data processing techniques, or relating to 
coming data. 

 

 

Figure 1.  Sources of uncertainty.  

Quantifying of the program impact on results leads 
unavoidable to an analysis of its numerical uncertainty. 
Numerical uncertainty of solution is subject to a lot of 
approximations and limitations in software designing and 
implementation (e.g. effects of floating point operations, 
translations, normalizing). The null space technique based 
on kernel theory [4] has been employed in generating data 
for numerical uncertainty assessment. An error model used 
in validation was formed basing on an assumption that data 
are subject both from measured object and experiment. The 
procedure for generating takes a following form. The data 
are randomly chosen from uniformly spaced segments of 
nominal feature area. The points are disturbed then by form 
deviations arising from machined surface structure. A real 
surface is represented by the sum of independent harmonics, 
with given number, given magnitudes, and random phase 
angle (1). The current deviation ε  of any i  point is 
represented by formula:  

iR th−

 ,  (1) )ksin(a)( ki
k

kiiR ψφφε += ∑

where k=2,3,…,p is the number of harmonics describing the 
surface,  is the amplitude of  sine wave, the ψ  is 
the phase angle. The quantities and  present in formula 
(1) are assumed to be random variables.  
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Many potential sources of errors can be observed in each 
measuring device’s axis. Each coordinate of disturbed point 
is subject to random errors generated from normal, i. e. 
Gauss distribution: ~N(0, σ ) and  δ ~N(0, ), giving 
the resultant deviation at point : 
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Finally, the data are apart from nominal positions by 
total residuals being superposition of both disturbances (1) 
and (2).  

One should be distinguished that both  and δ , for 
simplicity for two-dimensional feature, are independent 

errors arising from experiment influences (device, 
environmental factors, strategy), not from dimensional 
variability. Our strategy differs insignificantly from ISO 
concept, but the consequences can be meaningful in some 
cases. The final residuals in many cases do not follow to 
normal distribution, especially if only few harmonics are 
representing the surface. The solution returned by software 
does not fulfill a condition arising from properties of least 
squares estimate. It can be mathematically correct although 
not necessarily can conform to the known value specified  
a priori. The technique of creation of reference pairs is not 
still valid [3]. We cannot infer about statistical properties of 
solution without thorough analysis. Another approach was 
needed. The acceptable bounds on differences between 
actual solution and specified value had to be estimated 
developing the modeling technique. This method has been 
previously discussed in [4]. Although the validated software 
supplied by data does not distinguish the effects influencing 
them, the error in evaluated estimates can be decomposed 
into separate parts and be analysed accordingly if only the 
certain bounds on errors in data, i.e. confidence intervals of 
supplied data can be considered as known.  
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To establish the uncertainty of evaluated quantities basing 
on the knowledge of data errors one should know if they are 
valid, that is if we can predict the data uncertainty. The data 
generated according to any statistical model as in such cases 
should be validated. This imposes the generated data sets to 
be carefully investigated.  

5. ERROR MODEL IN DATA GENERATION 

We consider a model for the deviation = , 
where:  
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and n is number of sampled points.  

The complete deviation at i-th point is then a sum of 
elements, which are realizations of two independent random 
variables, denoted respectively  and .   RΕ NΕ
Because the phase angle  in (1) is chosen randomly the 
realisation of  at any point on profile (1) follows to 
Rayleigh or normal distribution depending on the number of 
harmonics [5]. When this number is small the distribution 
can differ significantly from the normal distribution.  
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The second contributor Ε  in the form of the superimposed 
errors being realisation of two independent normally 
distributed variables (2) can follow to Rayleigh or Maxwell 
distribution if only they are uncorrelated and have 
approximately equal variances, i. e. = σ .  
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Accordingly to the testing rule that known inputs lead to the 
specified outputs the confidence intervals of input quantities 
should be known for further analysis and evaluation of the 
software results, Fig. 2.  
Applying simple additive model of errors (3) the bounds 
encompassing the model location for generated point of the 
given confidence level have to be estimated.  



Several methods we had at our disposal to realize this task. 
They can be roughly divided into analytical methods 
(theoretical functional characteristics identifying the 
distribution), numerical (approximation by means of Monte 
Carlo method) or approximate ones basing on the random 
variable moments assessment. We analysed a number of 
them trying to chose among them the most useful and 
convenient for our purpose. The most common used appears 
to be the Monte Carlo simulation implementing the 
propagation of the distribution [6].  
 

 

Figure 2.  Dependences in validation.  

Indeed, if  and  are independent random variables 
with known density  and  respectively, defined 
for all ζ , then their sum is a random variable with a 
density function f  being the convolution of  and 

. But in some special circumstances, when the actual 
distribution of variables can deviate from model 
assumptions, more appropriate seemed us to develop 
different concept.  
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6. THE CONCEPT  

The values of parameters and factors needed in designing 
the reference data sets are assigned strictly with respect to 
ISO standard recommendations: the number of harmonics as 
well as magnitude of random effects, the number of sampled 
points, and others. The set of constants and randomised 
quantities constitutes the particular test case and determine 
unique reference data set, thus each modelled case is 
represented by separate data set.  
 

 

Figure 3.  Error model.  

Each of realization of data is a sum of its “true” value, 
known from model assumption and equal to the point 
nominal location and deviation being realization of certain 
random variable, Fig. 3. From statement on statistic mean 

results that analyzing the confidence intervals of random 
coordinates leads to analyzing the confidence interval of 
random errors.  
Their distribution is considered as unique, due to single test 
case distribution of random variable. It can be analysed at 
fixed but arbitrary data point. Thus after evaluation of 
summary deviations for each constructed data point they are 
all transformed to one model point.  
Finally, the random sample , like in (3), is derived 
considered to be adequate to represent a modelled test case 
(e.g. depending on number of harm.), certainly under usual 
conditions.  

ε

But this fact appears the main assumption underlying the 
bootstrap methods, which can be useful for finding the 
distribution that results from convoluting the component 
distributions [7]. One advantage of this concept is that an 
exact analytical expression for resulting distribution is not 
indispensable to be a priori specified. From sample the 
necessary information is possible to extract using bootstrap 
intervals estimation.   

7. IMPLEMENTATION 

We have implemented the following algorithm [8].  
1. Sampling. Let original sample of data errors was 

drawn at random from some unknown distribution.  
The assumption has been made that the sample  
constituted the underlying distribution (“iid” 
sample).  

ε

2. Resampling. We generated random samples 
=  of size m, being the random vector 

of  a large number of times. The obtained values 
were used to form an empirical distribution. The 
distribution of was approximated by means of 

empirical distribution basing on sample . 
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3. Construction of the 100  percentiles. The -th 

percentil of N ordered values, where 
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determined after sorting all values, first 
corresponding to the nearest integer number of 
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interval was easily found.  
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4. Execution. The results were based on N=1000 
replications. The algorithm has been implemented 
in Matlab ver. 7.7.0.471, in order to test this 
concept. The pseudo-random number generator 
built in Matlab has been used.   
We made many trials plotting the final distribution, 
as well as calculating the bootstrap mean and 
confidence intervals.  

 

8. AN EXAMPLE  

A practical example illustrates this application. Let’s 
consider a circle feature. For randomly distributed points the 



random signals in each coordinate were drown from 
identical distribution N(0, =0.002), Table A.6 [2], giving 
the  resultant residual. The sinusoidal components have 
magnitudes drown from interval 0.005 mm, Table A.5 
[2]. Table 1 includes further assumptions of test parameters 
for designing three samples of data.  

σ

±

Table 1.  Set of test parameters values.  

Code of 
sample 

Radius, 
center  

ox ,  oy
[mm] 

Phase 
angle 
φ  
 

Number of 
points 

Number of 
harmonics 

FM_001 Random from  
[50÷450] 
[35÷315] 

Random from 
 ]2[ ππ ÷

 

5 2 

FM_002 Ditto Ditto  5 5 
FM_003 Ditto  Ditto  10 5 

 
In Table 2 we present the values of mean, upper and 

lower bounds of 99.73% confidence interval. They were 
obtained by means of bootstrap method and alternatively by 
conventional analysis under the normal distributed data 
assumption.   

Table 2.  Results of the experiment.   

Estimate of 
statistics FM_001 FM_002 FM_003 

Original 
sample -0.0012 0.0022 -0.0013 

)X(µ  
Bootstrap 

sample -0.0010 0.0003 -0.0008 

Original 
sample -0.0060÷0.0060 -0.0043÷0.0043 -0.0036÷0.0036

)X(U1 α−

Bootstrap 
sample -0.0049÷0.0025 -0.0006÷0.0051 -0.0035÷0.0012

Original 
sample 0.0042 0.0008 0.0030 

)Y(µ  
Bootstrap 

sample 0.0065 0.0010 0.0023 

Original 
sample -0.0040÷0.0040 -0.0041÷0.0041 -0.0033÷0.0033

)Y(U1 α−

Bootstrap 
sample -0.0010÷0.0072 -0.0022÷0.0033 -0.0006÷0.0050

 
From results one can evaluate the differences between 

these two methods. The interval length computed basing on  
the quantils of standard normal distribution can be 
sometimes almost 67% greater than that one basing on 
bootstrap method. The bootstrap distributions for two first 
analysed samples are showed as well on Fig.4.  

One can notice that using bootstrap method can be 
valuable in the case of small number of harmonics, where 
data can differ significantly from Gaussian data. Deciding 
on it we should however answer on some questions. The 
reliability of bootstrap results depends not only on number 
of replications but also on how the original sample is 
representative. To invoke the asymptotic properties of data 

we should determine among others the representative sizes 
of data for each test case. 

 

 

Figure 4.  Histograms for bootstrap samples.  

9. CONCLUSION 

To ensure compliance with standard regulation 
submitting software to validation is important necessity for 
software developers. The activities have been planned and 
occurred in various stages for validation of metrological 
software in our Institute. The paper describes some 
problems involved the validation by generating the reference  
data sets. To solve any of them the bootstrap method can be 
applicable especially in cases when little is known about 
statistical distribution of the generated data and the size of 
data set is small. The method was shown to be very simple 
in implementation and can stand a useful tool in validation.  
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