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Abstract - Among mobile systems which are being 
implemented more generally to the measuring practice 
such as coordinate measuring arms (CMA), there is a lack 
not only commonly accepted methods of accuracy 
assessment but also procedures to determine the accuracy 
of any realized measurement, what is particularly 
important and expected by industry. According to the 
authors application of simulation using virtual CMA 
would be the effective solution. In this article the model 
of kinematic, metrological CMA elaborated in Laboratory 
of Coordinate Metrology in Cracow University of 
Technology and its research verification in relation to the 
real CMA were described. Thanks to such elaborated 
model, there is a possibility to elaborate virtual measuring 
arm, which should comprise not only elaborated 
kinematic, metrological model but also application of 
metrological software in order that the assessment of 
uncertainty of realized measurement in real and quasi-real 
time be possible.  
Keywords: Coordinate Measuring Arms (CMA), Model, 
Kinematics. 
 

1. INTRODUCTION 
Development of coordinate metrology means not 

only new measuring systems but also new methods of 
assessment of uncertainty of realized measurements.  One 
of the most promising method is application of virtual, 
measuring systems working in time closed to time of 
realization of a typical task and giving the uncertainty of 
measurement together with the result of measurement.  In 
case of manual measuring systems such as CMA carrying 
out this task is difficult because the systems are redundant 
and their kinematics has a nature of open chain supported 
by rotational, kinematic pairs.  However using the 
knowledge about manipulators and metrological robots 
the idea to elaborate this model arose in Laboratory of 
Coordinate Metrology in Cracow University of 
Technology [3] and [1,2,3,7]. The base of accepted idea is 
kinematic description of CMA, thanks to which there is 
possible to change the space of configurated coordinates 
to the space of Cartesian coordinates in accordance with 
Denavit-Hanterberg notation. This notation of 
determination of kinematics consists in connecting local 
coordinate system with each joint, and than specifying the 
sequence of transformation of next coordinate systems 

and leads to calculation of kinematics of device as a 
connection of these transformations (Fig. 2). 

Simple kinematic task consists in calculation of the 
position and orientation of the working element towards 
the reference system of the base, for the given set of 
configurated coordinates. This task can be treated as a 
mapping of description of the position of kinematic chain 
from the space of configurated coordinates to the space of 
Cartesian coordinates. 

Reverse kinematic task consists in determination of 
each possible sets of values of angular and linear 
displacements (configurated coordinates) in moving 
coonections, which enables CMA to achieve the tasked 
positions and orientations of the measuring pin. 

If we accept, that coordinates obtained from the 
calculation of the simple kinematic task are nominals and 
the coordinates red from the machine interface are tasked 
points, we can carry out the kinematic analysis of CMA. 
Thanks to that determined task we can simulate a work of 
our device, study its errors and even generate the 
uncertainty of measurement in quasi-real time. 
Thanks to obtained data from kinematic description of 
CMA, the CMA was modeled in Catia v.5 in order to 
display the results and verify the correctness of work of 
the model quickly. 
 

2. DESCRIPTION OF KINEMATICS OF CMA 
 

2.1.Position vector  

Assuming, that particular elements of CMA are stiff 
solids, than their location in reference system is described 
with the help of their position and orientation. Marking 
Cartesian coordinate reference system by xyz, the origin 
of coordinates by O and unit vectors by i, j, k of the axes 
x, y, z, system x’y’z’ was assigned to stiff solid with the 
origin O’ and unit vectors i’, j’, k’ .  

Position of point O’ towards the system xyz describes 
position vector: 

            p = pxi + pyj + pzk,              (1) 

where px, py, pz are its components along particular axes of 
the reference system  

                 p = [px py pz]                  (2) 
 



2.2. Representation of rotation 

To minimize the number of elements describing the 
rotation, the representation of rotation was introduced., 
which uses less number of variables. 

The rotation is represented by unit vector k of axis of 
rotation k, described in reference system xyz, and rotation 
angle θ. In literature this method is known as the 
representation axis/angle [2,5]. 

To determine the matrix resultant of the rotation Rk(θ) 
it is presented as a connection of elementary rotations 
around axis of reference system, which we obtain by 
making the following convert sequences towards 
reference system xyz (in accordance with Fig. 1): 

- Rotation about angle –γ around axis z, and than about 
angle –β around axis y (by this transformation vector 
k become compatible with axis z). 

- Rotation about angle θ around axis z 

- Rotation about angle β around axis y, and than about 
angle γ around axis z y (by this transformation vector 
k gets original sense). 

 This sequence is described by the formula: 

  Rot(θ)=Rk(θ)=Rz(γ)Ry(β)Rz(θ)Ry(-β)Rz(-γ)     (3) 

 The angles β and γ are determined on the basis of the 
components of unit vector k=[kx, ky, kz]

T: 
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Final formula is:

















+−+−−−
−−+−+−
+−−−+−

=
θθθθθθ

θθθθθθ
θθθθθθ

θ
cos)cos1(sin)cos1(sin)cos1(

sin)cos1(cos)cos1(sin)cos1(

sin)cos1(sin)cos1(cos)cos1(

),(
2

2

2

zxzyyzx

xzyyzyx

yzxzyxx

kkkkkkk

kkkkkkk

kkkkkkk

kRot  (5)

 In practice we’ll be interested in determination of 
vector k and angle θ when we have matrix of rotation R: 
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and in accordance with [1] we have: 
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In a case of representation axis/angle, rotation is 
described with the help of four parameters it means angle 
and three components of versor of axis of rotation [1]. 

 

Fig.1 Rotation around optional axis 

3. DIMENSIONING AND   
REPRESENTATION OF CMMA 

 

3.1. Notacja Denavita-Hartenberga 

Coordinates of Denavit-Hartenberg are described by 
four parametres: θi – rotation around axis zi-1, λi – 
displacement, stand-off distance along axis zi-1, li – 
distance of axis zi-1, and zi measured along common 
perpendicular, it means axis x, αi – rotation angle, 
beveling axis zi towards axis zi-1, as a rotation towards 
axis xi  (Fig.2). In a case of rotational pair, angle θi is 
variable, and stand-off distance λi is constant [2,4,5]. 

Matrixes of homogeneous conversions, adequate to 
specified paremetres, can be presented as a formula:  
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By multiplication of these matrixes we obtain the 
matrix of position and orientation which concert i 
coordinate system to i-1 system. 
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Bi- matrix of orientation, pi- matrix of position [2,4] 

 

.  
Fig.2. Kinematic diagram CMA 

3.2. Simple kinematic task 

Simple kinematic task consists in calculation of 
position and orientation of coordinate system (i+1) 
towards reference system. 

Using the definition of the matrix of homogeneous 
transformation we write: 
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3.3. Reverse kinematic task 

This method is based on the equation (11). Left side 
of this equation shows the position and orientation of the 
measuring pin towards basic system and is tasked it 
means we know the position and orientation of the tool in 
the given moment. Right side is the product of the 

homogeneous matrixes multiplied from the base of CMA 
to their measuring pin.  

This task consists in determination of the generalized 
positions (means connections of particular degrees of 
freedom CMA) and is very difficult to realize because the 
equations are nonlinear and it is hard to find the solution 
in clear form. In a case of CMA, which are redundant 
systems, the solution can have infinitesimal large number 
of solutions.  

4. DESCRIPTION OF THE ERRORS OF 
POSITION AND ORIENTATION 

 
4.1. Error of position 
 

 Determination of error of position is expressed by the 
formula: 

                ppp dp −=  ,                                 (12) 

what is seen in Fig. 3a, where vector pp is the difference 

between tasked vectordp ,and p tasked by the machine.  

 
 
 

Fig.3a. Error of position   
Fig.3b. Definition of error of orientation 

                                                                                     
4.2 Error of orientation 

 

In case of determination of error of orientation (Fig. 
3a) we can use a formula (11), and thanks to it we can 
obtain matrix of orientation of tip of measuring pin 
towards basic system. It is necessary to find the formula 
to count over the errors of orientation it means the 
difference between the tasked and actual rotation. In 
general case to determine the rotation there is a need to 
use three vectors n, o, a, defined in chapter 2.1 in the 
formula (10). The tasked orientation will be marked by 
Rd, and actual by R. In our case we are able to obtain only 

vector n  from the device (CMA), which is compatible 
with the position of the measuring pin.  
Error of orientation is calculated on the basis of the 
formula (1): 

θsinke =                        (13)                                    
 

The way of determination the orientation presents 
Figure 3b. [2,4]. In the figure, the basic coordinate 

system, vectors nand dn , elementary vector k and 

rotation angle θ around him are marked. It is also 

assumed, that vectors dn  and nhave the beginnings in 

point O (Fig. 3a). The error need to be determined with 



the help of matrixes of orientation Rd and R. Because k is 
elementary vector which determines the rotation axis, the 
angle θ is the equivalent rotation angle between the 

systems n o a and nd od ad ,that is between vectors n  and 

dn , the error of orientation can be calculated with the 

help of the formula:  
 
                              Rot (k, θ) = Rd R

T           (14) 
 

This formula describes what conversion need to be 
done to determine the coinciding the systems R and Rd, 

and in our case vectors n  i dn . To calculate this 

conversion the right side of the formula need to be 
determined (14), with the vectors in matrix form (3x1). In 
accordance with vectorial and matrix calculus, the 
systems or vectors, to coincide, need to fulfil the 
assumption: 

=T
dRR I                      (15) 

Marking tasked vector by [ ]zyx nnnn = , and 

actual vector from the machine by 

[ ]zmymxmm nnnn = , after multiplication we obtain 

matrix (3x3). 
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Next step is presenting the formula (14) with the help 

of the formulas (5) – left side and (16) – right side. 
Comparing the sum of the diagonal terms of the both 
matrixes, and using the assumption: 
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we subtruct the outdiagonal terms (1,2) and (2,1) of the 
both matrixes and we obtain:    
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where after simplifying we have: 
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next we subtruct the outdiagonal terms (3,1) and (1,3) and 
we obtain: 
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next we subtruct the outdiagonal terms (2,3) and (3,2) of 
the both matrixes and we obtain: 
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Korzystając z zależności: 
 

1cossin 22 =+ θθ                      (20) 
 

we obtain: 
 

2)(
4

1
1sin zmzymyxmx nnnnnn ++−=θ      (21). 

After preliminary research and in accordance with [1] we 
can state, that error of orientation is expressed with the 
help of rotation pseudo-vector and can be written by the 
formula: 
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,what is wanted relationship in error of orientation. Let’s 
also notice, that angle limitations implicate fallowing 
conditions to scalar product nTnm ≥ 0. Certainly, if the 

vector n  coincides with vector mn , the error of 

orientation equals 0. 
 

5. DETERMINATION OF KINEMATIC ERRORS 
 
Computing the simple task we obtain not only the 

matrix with informations about the orientation, but also 
the location of measuring pin. Thanks to Romosoft 
software we are able to obtain directly not only vector 
compatible with measuring pin, but also coordinates x, y, 
z and angles between particular parts of CMA. 
 

5.1. Model WRP in CATIA V5 

The best way to verify the correctness of the model 
and compare it with the real object is model of a 
measuring arm 3D built in program CATIA V5R17 in 
module DMU Kinematics (Fig. 4). 



 
 

Fig.4.Photo of the real position of CMA and simulated in 
program Catia v5 

 

 
 

Fig.5. Parametric model of CMA 
 
As the model 3D was improved it became necessary 

to rebuild simple model and widen its construction in 
order to give each component in coordinates D-H in Catia. 
 

5.2. Error of position 
 

On the basis of first three datas from GDS software 

we can determine vector , which will show the 
characteristic point of the measuring tip CMA in global 
coordinate system. This error is very intuitive and easy to 
calculate, that’s why it was used earlier to comparing the 
accuracy of the mathematical model in accordance with 
indications od CMA. In order to calculate the error of 
position, which will show the CMA accuracy in arbitrary 
configuration, it is necessary to determine the error of 
position for relatively large set of configuration, enough 
dispersed in measuring space to be for it representative.  

Particular components of the error of position are 
calculated on the basis of the solutions of simple task in 
Mathcad program among each registered configurations 
for the actual calibration of the arm. The results are 
represented:  
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Fig.6 Graph of error of position 

5.3.   Error of orientation 

Particular components of the error of orientation are 
calculated on the basis of the solutions of simple task in 
Mathcad program among each registered configurations 
for the actual calibration of the arm. The results are 
represented: 
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Fig.7. Graph of error of orientation (rhomb-variable x, 
square- variable y ,triangle- variable z, cross- error of 

orientation) 
 
6. ASSESSMENT OF THE OBTAINED RESULTS 

 
1) Error of orientation is small, from 0,000106 mm do 

0,000687 mm FOR the particular axes (results 
obtained from 29 measurements), for the device 
which MPE is ±0.035 mm, what is a satisfactory 
result, 

2) If vectors n  and dn  coincide, the angle between 

them equals 0 and the error of orientation also equals 
0, 

3) Derived formula of error of orientation is based only 
on directional vector of the measuring pin, not on the 
whole matrix as was earlier, what minimize the 
number of variables in the formula, 

4) Errors of position and orientation of CMA were 
determined in 29 configurations, which took the 
whole measuring space of the machine. Results 
obtained from these configurations are contained in 
MPE given by the producer.  

 
 
 



 
7.      CONCLUSIONS 

 
Determination of the metrological model of CMA 

consists in identifications of the kinematic errors. These 
error can be simulated in accordance with kinematics of 
manipulators. Moreover the essence of the problem is 
coinciding the component errors on the basis of taken 
mathematical model, which determines the vector of 
deviation for arbitrary point in measuring space in CMA 
model. 

In order to determine the error of orientation there is a 
need to find the conversion to be done because the 
rotation obtained from the machine needs to coincide with 
tasked rotation, calculated from simple task. From the 
software added by producer we can directly read the 
vector compatible with the direction of measuring pin, 
coordinates x, y, z, of measuring tip and also readouts 
from encoders that are configurated coordinates.  
On the basis of them we determined the algorithm of 
simple task, where there is the information about 
orientation of measuring pin and also the information 
about the position of the measuring tip and next in this 
research we found the configuration, thanks to which we 
obtained the same value of the tasked rotation and 
obtained rotation.  

3D model of a measuring arm built in program 
CATIA V5R17 in module DMU Kinematics turned out 
the best way to verify the correctness of kinematic, 
metrological model and compare it with the real object.   

Thanks to module DMU Kinematics quick 
comparison of movements between model and real arm 
and comparison between obtained and nominal orientation 
became possible. Thanks to that, such sources of the 
biggest component errors were isolated that their 
correction became possible. 
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