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Abstract − Both, the ISO-GUM [1] and the Supplement 

S1 of the GUM [2] require expressing the knowledge about 
the measurement process by a so-called measurement func-
tion [3], which represents the mathematical relationship 
between the relevant parameters, the influence quantities, 
and the measurand(s). Nevertheless, both documents are 
confined to lumped-parameter systems in the steady state. 
Since dynamic measuring systems gain more and more 
importance, modern uncertainty determination must develop 
appropriate modelling approaches for dealing with dynamic 
measurements. This paper exemplarily describes a possible 
modelling approach for dynamic measurements that utilizes 
discretized state-space forms. The basic role of the cause-
effect approach and its necessary inversion for the 
uncertainty evaluation is emphasized. The paper is an 
extension and refinement of former work of the authors [4]. 
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1.  INTRODUCTION 

 For evaluating the measurement uncertainty, the GUM 
framework [1, 2] requires to express the knowledge about a 
measurement by the so-called measurement function [3], 
which represents the mathematical relationship between the 
relevant parameters, the influence quantities, the 
indication(s), and the measurand(s). But the GUM 
framework [1, 2] does not (yet) provide any assistance on 
modelling of measurements. Moreover, today it is confined 
to lumped-parameter systems in the steady state. 
 This paper describes a modelling approach that starts 
from a cause-effect analysis of the measurement process. 
For modelling of dynamic measurements in the time 
domain, discretized state-space forms are proposed. These 
mathematical forms originate from signal and system 
theory. Due to their obvious advantages (see Section 5), they 
form an appropriate means for modelling of measuring 
systems. 
 

2.  THE CAUSE-EFFECT APPROACH AND THE 
MEASUREMENT FUNCTION 

In measurement, usually the measurand and other in- 
 fluence quantities can be seen as causative signals which 
are physically transformed by the measuring system into 
effects, for example into indications. Therewith, the 
measuring system assigns values to the measurand(s), and 
the system is influenced by system-disturbing influence 
quantities. The cause-effect approach is the most commonly 
used and comprehensible methodology for representing 
basic relationships in modelling of measurements [5, 6]. It is 
based on the constitutions of the path of the measurement 
signal from cause to effect. A model that describes the 
cause-effect behaviour of a measuring system or sensor is 
often termed 'measurement equation' or 'sensor equation'.  
 In contrast to this, for determining the measurement 
uncertainty, usually an 'inverse model' is needed that 
establishes the relationship between the 'target quantity', i.e. 
the measurand(s), Y, and all relevant influence quantities 
and the indication(s), X = (X1,..., XN)T. So far, this model 
category has been termed 'model equation' or 'measurement 
reconstruction model' [5].  
 

 
 
Fig. 1. Comparison of model categories: 'Measurement equation' 
vs. 'model equation' or 'reconstruction model' or ‘measurement 
function’ [4-6]. 
 
 The new ISO IEC Guide 99 (‘VIM 3’) [4] uses the term 
‘measurement function’ which is generally expressed as 



 
Y = fM (X1,..., XN).    (1) 
 
 Fig. 1 illustrates the difference between the two model 
categories. 
 
In practice, due to its comprehensibility and deducibility 
from the real system, the cause-effect approach almost 
always forms the basis for the modelling of measurements. 
The cause-effect approach itself is founded on the transfer 
behaviour of the functional elements of the measuring chain. 

3.  DESCRIBING AND MODELLING THE 
TRANSFER BEHAVIOUR 

 Measuring systems are usually modelled the same way 
as any other technical information system. First, the system 
is decomposed and modularized into functional elements. 
Then, the transmission behaviour of each functional element 
is mathematically described [5-6]. The so-called transfer 
function [7] relates the output signal(s) to the input signal(s): 
 
XOUT = h (XIN) ,   (2) 
 
where XIN = (XIN1,..., XINn)T – input signal(s), XOUT – output 
signals, and h – transfer function. 
 Fig. 2 exemplarily shows a depiction of a general steady-
state transmission element (a) and its application to an 
example (b) [6]. 

TRANS

�

TRANS

b)
A

0

B

1m
r

� �

TRANS

a) X IN
(h� X IN)

TRANS

b)
A

0

B

1W m
r

� �
�
�
�

�
�
�

�
�
�

�
�
�

W

m 0

r�

r �

X OUT
X OUT

 

Fig. 2. General transmission element: (a): General depiction. (b): 
Example: air buoyancy correction. Symbols: h – transfer function;  
(XIN1,..., XINn)T = XIN – input signal(s); XOUT – output signals; W – 
air buoyancy correction in terms of mass; ρA – air density, ρB – 
density of the body; m0 – uncorrected (true) mass [6]. 
 
 In measurement, the great majority of systems are treated 
as being linear and time-invariant [6]. Therefore, a proper 
description of this system category is of great importance in 
metrology and industrial measurement. Moreover, today, in 
analytical metrology, it is best practice to treat even slightly 
nonlinear and time-variant systems this way with account-
ting for additional uncertainty contributions owing to 
nonlinearity and dynamic effects [6]. 
 The transfer function of a time-invariant system or 
transmission element is represented by an algebraic equation 
(see Table 1). For a linear system, the transfer function 
consists of constant transmission factors, 
 
XOUT = h (XIN) = A = (A1,..., Am)T  ,   (3) 
 
where A = (A1,..., Am)T are constant factors. 

 Linear and time-invariant transfer functions can easily be 
inverted into the so-called ‘measurement function’ [3] or 
'reconstruction model' (see Equation (1) and Section 2). 
 But to an increasing extend, dynamic measuring systems 
gain importance in metrology and industrial measurement. 
The time-dependent behaviour of these systems or transmis- 
sion elements results from transient and storage effects 
affecting the quantity of interest. This might be briefly 
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Table 1. Survey on static and dynamic systems along with tools for 
their appropriate mathematical description. 
 
explained with an example [4, 6, 10]: A liquid-in-glass 
thermometer that indicates the ambient air temperature ϑa 
plus its (statical) instrumental error, ϑIND = ϑa + ΔϑINSTR, is 
at the time t0 being immersed into a water bath with 
temperature ϑB. Then, the cause-effect relationship of the 
measurement and temperature equalization process may by 
expressed by the following differential equations  
 

Th
IND B INSTR

d
T

dt
ϑ

ϑ ϑ ϑ= +Δ −  .    (4) 

 
 Consequently, the model equation becomes 
 

Th
B IND INSTR

d
T

dt
ϑ

ϑ ϑ ϑ= +Δ −  ,   (5) 

where DYN ( )Thd
T t

dt
ϑ

δϑ⋅ =  can be seen as dynamic error 

component, whose expectation is approximately  

δϑDYN (t) = (ϑB - ϑa) · exp ot t
T
−⎛ ⎞

⎜ ⎟
⎝ ⎠

 [5-6, 9].  

 In general, dynamic measuring systems can be classified 
as lumped-parameter systems or distributed-parameter 
systems. The key characteristic of a lumped-parameter 
system is that the state of the system, which uniquely 
describes the system behaviour, depends only on time. In the 
time domain, it is generally described by a set of ordinary 
differential equations [7]. Table 1 gives an overview on the 



mathematical tools used for the description of analogue 
static and dynamic systems in both the time domain and the 
frequency domain [6-8]. 
 It should be emphasized that in today's practice, the 
system description is usually discretized. Discretization 
allows for treating many types of systems as being linear (at 
a discrete point of time) and offers advantages for digital 
signal processing [11]. 

4.  INVERTING THE TRANSFER FUNCTION 

 Whereas for linear and linearizable systems, the 
measurement function [3]  is usually established by alge-
braically inverting the mathematical cause-effect rela-
tionship expressed by the transfer function, in case of non-
linearizable and dynamic measuring systems this might be 
awkward, i.e., in case of so-called ill-posed inverse pro-
blems. 
 Alternatively to algebraically inverting the cause-effect 
relationship, for uncertainty evaluation, the following 
strategies might be applied: 

(a) Incorporating the mathematical cause-effect-
relationship as a so-called ‘Model Prior’ into the 
‘Likelihood’ of the Bayes Theorem [9] and 
computing the ‘Joint Posterior’ probability density 
function (pdf) for the measurand. 

(b) Estimating the parameters of the measurement 
function [3] by means of recursive estimation 
algorithms (see Section 4), such as, for example, 
Kalman Filters. 

(c) Combinations of (a) and (b).  

5.  STATE-SPACE FORMS 

 State-space forms are a useful alternative approach to 
describing dynamic measurements in the time domain. In 
general, they consists of a combination of a system equation 
(6) and a so-called output equation (7) [8, 9] according to 
 

( ) ( )[ ]S IN, , ,f t t t=Z Z X  (6) 
 
XOUT(t) = fOUT [Z(t), XIN(t)], (7) 
 
where the state vector Z represents the present state of the 
system.  For example, an appropriate state variable (vector) 
may be the (real) temperature of a thermometer immersed 
into a water bath (see Section 3). 
 State-space forms are mathematically equivalent to the 
description by means of ordinary differential equations (see 
(4)). The relevant advantages are:  

(a) technically easy interpretation of the state vector  
(b) having first order differential equations only 
(a) allowing to easily derive the input and the output 

quantities/vectors from the state vector/variable. 
 Additionally, time discretization results in a finite-state 
form that basically allows to treat a measuring system as 
being linear (and time-invariant) at a discrete state Zk [11]. 
Consequently, (6) and (7) become 
 

Zk+1 = Ak Zk + Bk · XINk, (8) 
 
XOUTk = Ck Zk (+ Dk XINk), (9) 
 
where k indicates a discrete point in time and Ak, Bk, Ck and 
Dk representing constant transmission vectors at k. 

With a view to evaluate the (measurement) uncertainty 
for a (measurement) process described in space-state form, 
the above variables (vectors) XIN, XOUT and Z are to be 
described by appropriate probability density functions (pdf) 
g(XINk), g(XOUTk) and g(Zk), which represent the incomplete 
knowledge about the variables (vectors). Furthermore, based 
on the existing knowledge about the measuring system, both 
the state equation and the output equation may be 
augmented by additional noise/uncertainty components to 
account for the imperfection in modelling of the whole 
(measurement) process. 

 
 

Fig. 3. Illustration of the example described: Modelling of dynamic 
error and uncertainty. 
 
 For better illustration of the application of state-space 
forms to measuring systems, the thermometer example 
given in Section 2 is changed and extended to a calibration 
of the instantly immersed thermometer, and the bath 
temperature is made known by a standard thermometer (see 
Fig. 3) [4, 10]. Assume, the calibration aims at the (steady-
state) systematic error ΔϑINSTR. Obviously, the (real) 
temperature of the thermometer to be calibrated, ϑTh, might 
be taken as a state variable, and the bias-corrected 
temperature indicated by the standard, ϑs, is an appropriate 
system input. Then, the discretized system and output 
equations would formally read as 
 
Zk+1 = Ak · Zk + Bk · ΔϑINSTR  + Bk · ϑs. (10) 
 
XOUTk = ϑINDk = Zk + νk , (11) 
 
where νk  represents a random uncertainty component. Fig. 4 
illustrates the basic structure of this model [4, 10]. 
 
 

System equation 
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Output equation 
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Delay 
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Fig. 4. Basic structure of a discretized state-space model in 
accordance with Equations (10) and (11) [4, 11]. 



6.  MODEL-BASED ESTIMATOR 

 Assume the above example (see Figure 4 and Equations 
(10) and (11) in Section 3): At the end of a thermometer-
production process, the instruments are calibrated, and the 
measurand is the (steady-state) instrumental error. The 
calibration is carried out by immersing the thermometers 
into a water bath of known temperature. For efficiency 
reasons, one cannot wait until the thermal steady state is 
reached. Therefore, a good estimate of the unknown dyna-
mic error is needed. This estimation can be carried out on 
the basis of a state-space model [4, 7, 10]. Fig. 5 illustrates 
the idea [10]: Both the uncertainties for the system equation 
and the output equation are taken into consideration. The 
system input and the state vector are described by 
appropriate PDFs. Due to the fact that in the given example 
the output quantity XOUTk, which is chosen to be the 
indication of the instrument to be calibrated (see Equations 
(10 and (11)), is well known, the (easy obtainable) inverse 
output equation might be used for obtaining a second  
estimate of the state-vector PDF gL (Zk) that is derived from 
real measurement data. Employing the Bayes theorem, this 
estimate is used to permanently update the PDF gp (Zk) 
provided by the system equation. For an optimal estimation 
result, ge (Zk), possible systematic uncertainty contribution, 
which can result in a significant covariance of the states Zk 
and Zk+1, are to be taken into consideration. Therefore, the 
estimation algorithm used for the ‘Bayesian step’ (see 
Figure 5) must be capable to cope with unknown 
correlation, by employing, for example, so-called covariance 
bounds [10, 12]. 
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Fig. 5. Model-based estimator [4,10] for the example given (see 
[4]). 
 
 Based on real input data, this model-based estimator has 
successfully been proven [4, 10].  
 The possible physical definitions and allocations of the 
state-space vectors (see Equations (8) and (9)) to a particular 
measurement process mainly depends on the model structure 
of the process or system and, hence, on the measurement 
method [3] utilized [5].   

7.  CONCLUSION 

 Modelling the measuring process is a necessary task for 
evaluating measurement results and ensuring their 

reliability. Since dynamic measurements gain more and 
more importance, modern uncertainty evaluation must 
develop appropriate modelling approaches. It is exemplarily 
demonstrated that discretized state-space forms in 
connection with model-based estimators are a suitable 
alternative for modelling dynamic measurements in uncer-
tainty evaluation. First results show the performance and the 
potential of this approach. 
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