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Abstract − Typically, a car has over 80 dynamically 

stressed seals. Since many years, the radial seal in combina-

tion with the shaft is a critical component for the automotive 

industry. A helix-like structure due to the manufacturing 

process (as a fingerprint of said process) can lead to an un-

acceptable oil consumption. In collaboration with Daimler, 

an objective method for characterising such function-

relevant helix-structures better known as lead was devel-

oped. The lead parameters, which are relevant to leak-

tightness, are derived from a least square fit of complex 

exponential functions in both directions radial and circum-

ferential. The basic measurement setup consists of a stylus 

instrument in combination with a rotation unit. 
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1.  INTRODUCTION 

Systems with dynamic sealing function are wide-spread 

in vehicular and mechanical engineering. Lubricants must be 

present in sufficient quantity, for example on tribologically 

relevant positions of moving parts, but may not leave the 

system. A multiplicity of assemblies with different function-

ality-requirements and different media to be sealed, which 

can be manufactured by a multiplicity of subcontractors, are 

affected by this. 

This was the reason why Daimler has developed the first 

generation lead metrology in 1997 [1]. The goal of this de-

velopment was the impartial evaluation of periodic surface 

components caused by turning or grinding manufacturing 

processes which are relevant to leak-tightness between a 

shaft and its sealing ring. Function relevant parameters were 

derived to reach specific requirements to the surface depend-

ing on the application, such as engine speed, left- or right-

handed motion, degree of pollution, working temperature 

and the medium to be sealed in. One major lack of this ap-

proach is the mathematical method detecting the critical 

periodically components. It based on the areal Discrete Fou-

rier Transformation (DFT) [2] which is simply an areal 

fourier series. This means that only an integer number of 

waves can be perfectly reconstructed. Nevertheless, the 

main advantage is the numerical efficiency of such an algo-

rithm because the fitted functions spanned an orthogonal 

space. But due to its limitation concerning the approxima-

tion properties the results were not always sufficient good. 

In 2004 Daimler decided to develop a new detection al-

gorithm to overcome the problems of the first generation 

approach. The lead parameters have been retained un-

changed. The second generation lead algorithm based on a 

least square fit of superimposed harmonic related complex 

exponential functions. 

The algorithm can be divided into two steps: the first one 

is the analysis equation to find the best approximation of the 

lead structure. The second one is the synthesis equation to 

reconstruct the relevant lead structure. As shown in the 

following, the approximation problem is separable and can 

be implemented in a very efficiency manner. 

2.  LEAD MEASUREMENT 

Lead describes all surface occurrences, which contribute 

to a conveying action of the fluid to be sealed in. Lead arises 

both in turning and grinding. Inevitably due to feed motion, 

turning results in a usually singly thread-like surface-

structure, where the rotary feed determines the lead-

gradient. During grinding with dressing-infeed-motion the 

dressing-infeed creates a helix on the surface of the work-

piece of the grinding disc (Fig. 1). 

 

Fig. 1.  Projection of the dressing helix to the workpiece. 

The lead arises, as this dressing-helix is transferred to the 

workpiece surface during grinding subject to the ratio of 

rotational velocities. Therefore, the entire work-piece pe-

rimeter shall be considered in order to determine the lead 

structure. 

2.1. Measurement procedure 

Lead is a periodical structure in both axial direction and 

circumferential direction. To characterise the roughness 

structure in axial direction it is convenient to use a high 

resolution measurement. In circumferential direction the 

resolution can be significantly coarser because the frequency 



of the structure lies typically in a range between 0 and 180 

waves per perimeter. Hence, it is adequate to measure lead 

by a defined number of parallel roughness traces in axial 

direction. To avoid any influences caused by the clamping 

of the workpiece (e.g. excentricity) a standard formtester 

with a surface texture probe is used. But there are other 

measurement setups possible. As an example, Fig. 2 shows a 

roughness measurement system with a rotation unit. In this 

case, a special algorithm has to be adapted to eliminate the 

radially run out [3]. 

 

Fig. 2.  Lead measurement with a standard roughness measurement 

system. 

An example of a tactile measured workpiece (turned sur-

face) with lead is shown in Fig 3. The data set consists of 72 

roughness traces. Each roughness trace is 2mm long with a 

sampling distance of 0.5µm 

 

Fig. 3.  Grinded surface with lead. 

2.2. Measurement conditions 

Two different measurement grids have to be distin-

guished. The first one is defined over the perimeter of the 

work piece with an angle step of 5°. This initial grid with 72 

traces is used to eliminate the said radially run out and to 

detect helix structures with a frequency lower equal 15 in 

circumferential direction. If the frequency of the helix struc-

ture is higher than 15 a second grid with an angle step of 

0.5° over a range of 36° is used (72 traces). The default 

evaluation length of each roughness trace is 2mm. This 

means that a total amount of 136 profile traces are needed 

for the whole data set. Using a standard speed of 0.5 mm/s 

the total measuring time is approximately 15 minutes. As an 

alternative, the tactile probing system can be substitute by a 

confocal chromatic sensor in combination with a high speed 

drive unit (see Fig 4.). Thereby, the measuring time can be 

reduced by a factor of five. By default, the tactile measuring 

system is the reference system. 

 

Fig. 4.  Lead measurement in combination with an optical confocal 

chromatic sensor. 

3.  LEAD EVALUATION 

3.1. Approximation algorithm 

Per definition, lead is a periodically structure in axial 

( x -coordinate) and circumferential direction ( y -

coordinate). Therefore, it is straightforward to use a super-

position of harmonic related cosine functions to synthesise 

the lead surface ( , )w x y : 

 ( )( )
1

( , ) cos 2k x y k

k

w x y A k f x f y

∞
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where kA  are the amplitudes, kϕ  are the phases, xf  is the 

frequency in axial direction and yf  is the frequency in 

circumferential direction. To characterise function relevant 

properties, it is sufficient to use the first three harmonic 

components of the given series. Taken into account, that a 

cosine can be expressed by a complex exponential function, 

equation (1) can be rewrite as follows: 
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The amplitudes and phases are expressed by the coeffi-

cients kc  and kc , where kc  is simply the complex conju-

gate of kc . 

Because the surface is sampled, the coordinates must be 

replaced by = ⋅∆x m x  with 0,..., 1m M= −  and = ⋅ ∆y n y  

with 0,..., 1n N= −  respectively, where x∆  and y∆  are the 

sampling distances in the given directions. As described 

above, the number of measuring points in circumferential 

direction is 72N = . M  depends on the sampling distance 

x∆ . Typical values are 4000M =  which implies a step size 

of 0.5x∆ = µm. To simplify the calculation procedure the 



sampled surface ( ),z m x n y⋅ ∆ ⋅ ∆  and the lead structure 

( ),w m x n y⋅ ∆ ⋅∆  is reorganized as column vectors z  and 

w  with vector elements ( ),m n Mz z m x n y+ ⋅ = ⋅ ∆ ⋅ ∆  and 

( ),m n Mw w m x n y+ ⋅ = ⋅∆ ⋅ ∆ . 

The unknown parameters are calculated using the a least 

square approximation: 
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where H  is the hermitian of the matrix. It is shown in 

[4], that the solution for the given least square approxima-

tion depends only on the unknown frequencies xf  and yf  

and results in the expression 
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The 6M N⋅ ×  matrix E  spanned the vector space of 

linear independent complex exponential functions according 

to equation (2). The elements of E  are defined as 
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where 2x xf xΩ = ⋅ π⋅ ⋅ ∆  and 2y yf yΩ = ⋅ π⋅ ⋅ ∆ . 

After calculating the frequencies xf  and yf  which 

maximise equation (4), the solution for the fitted data is 
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where 

 1 1 3 3C
H
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is the vector with the unknown parameters kc  and kc . 

As an example, Fig. 5 shows the reconstructed helix-

structure of the measured surface pictured in Fig. 3. 

 

Fig. 5.  Reconstructed lead of the measured surface in Fig. 2. 

3.2. Fast approximation algorithm 

The lead algorithm described before can be calculated by 

a numerical high efficient algorithm. To get a fast solution 

for our optimisation problem, we define two basis vectors 
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Because the complex exponential function is separable 

in x  and y  we define a matrix with three linear independ-

ent cosine functions for each direction 

 ,1 ,1 ,2 ,2 ,3 ,3E e e e e e ex x x x x x x
 =    (10) 

and 

 ,1 ,1 ,2 ,2 ,3 ,3E e e e e e ey y y y y y y
 =   . (11) 

For the further considerations, we define a matrix Z  for 

the sampled measured data and a matrix W  for the ap-

proximated lead structure. The parameter vector C  in equa-

tion (7) can be now calculated by 

 ( ) ( )( ) ( )
1

C E E E E diag E Z E
H H H
x x y y x y

−
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Following equation (4), we have to maximise the expres-

sion 
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The conditions (12) and (13) are valid for an arbitrary 

frequency grid. But in the case of yf , we know that the 

number of threads in circumferential direction can only be 

an integer. Moreover, in the case of the 360° data set it can 

be easily shown that the optimisation problem is reduced to 

 ( ) ( )
,

diag E Z E diag E Z E
x y

H
H H
x y x y

f f
max⋅ ⋅ ⋅ ⋅ ⋅ →  (14) 

without calculating the inverse according to equation 

(12). After solving equation (13) and equation (14) respec-

tively, the reconstructed lead structure can be finally deter-

mined by 

 ,1 1 ,1 1 ,3 3 ,3 3W E e e e e
H

x y y y yc c c c = ⋅ ⋅ ⋅ ⋅ ⋅ ⋯ .(15) 

To find the optimal parameters for the reconstructed sur-

face, we can summarise the procedure as follows: Define a 

set of frequencies yf . Make a FFTM -point FFT [5,6] in x  

direction for each column in Z  (with zero padding if neces-

sary) and build the FFTM N×  matrix M  with the matrix 

elements ,M p n  and the discrete frequencies 

2x FFTf M p= ⋅ π ⋅ , where 6FFTp M≤  and p ∈ℕ . For a 

first guess the inverse in equation (12) can be negligible to 



calculate the unknown frequencies xf  and yf . Therefore, 

the optimisation problem in equation (14) can be expressed 

by 
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With the given start values, calculate the true frequencies 

xf  and yf  using a Golden Section Search [7] for equation 

(13) (36° grid) or equation (14) (360° grid). 

3.3. Lead parameters 

The lead parameters (see Table 1) are derived from the 

reconstructed lead structure. Fig. 6 shows all relevant pa-

rameters to characterise the function relevant properties. The 

lead parameters are defined as follows: Dγ in ° is the lead 

angle between the structure orientation and the y -

coordinate (perpendicular to the axis of the shaft). Dt in µm 

is the totally depth of the reconstructed structure. DG is the 

number of threads in circumferential direction. DF in µm
2
 is 

the theoretical supply cross section e. g. to describe the oil 

volume between the sealing ring and the shaft. DFu is the 

total supply cross section and is defined as DF times DG. 

DP in mm is simply the periodically wave length in axial 

direction. Finally DLu is the material ratio in % of 80% the 

peak to valley height of the lead structure. 

Table 1.  Parameters to characterise lead. 

Parameter Definition 

Dγ lead angle in ° 

Dt lead depth in µm 

DG number of threads 

DF theoretical supply cross section in µm
2
 

DFu total supply cross section in µm
2
 

DP period length in mm 

DLu material ratio in % of 80% the peak to 

valley height  

 

Fig. 6.  Visualisation of the lead parameters. 

3.4. Drawing specification 

Drawing specifications for the lead parameters ensure an 

efficient manufacturing process. Two examples are given: 

Example 1 (see Fig. 7): 

First row: Rz shall be in the range of 1µm up to 4µm. 

The evaluation length is 4mm, 5 times the sampling length 

of 0.8mm. 

Second row: if the lead angle is equal to 0°, the lead 

depth shall be lower than 0.8µm between the axial wave-

length range of 0.02mm and 0.4mm. 

Third row: if the lead angle is unequal 0°, the lead depth 

shall be lower than 0.5µm between the axial wavelength of 

0.02mm and 0.4mm. 

The axial measuring length for the lead evaluation is 

equal to 0.4mm x 5 = 2mm 

 

Fig. 7.  1st example for the drawing specification for lead. 

Example 2 (see Fig. 8): 

First row: Rz shall be in the range of 1µm up to 4µm. 

The evaluation length is 4mm, 5 times the sampling length 

of 0.8mm. 

Second row: if the lead angle is equal to 0°, the lead 

depth shall be lower than 0.8µm between the axial wave-

length range of 0.02mm and 0.25mm. 

Third row: if the lead angle is equal to 0°, the lead depth 

shall be lower than 1µm between the axial wavelength range 

of 0.25mm and 0.5mm. 

Fourth row: if the lead angle is unequal 0°, the lead 

depth shall be lower than 0.3µm between the axial wave-

length of 0.02mm and 0.25mm. 

Fifth row: if the lead angle is unequal 0°, the lead depth 

shall be lower than 0.8µm between the axial wavelength of 

0.25mm and 0.5mm. 

The axial measuring length for the lead evaluation is 

equal to 0.5mm x 5 = 2.5mm 

 

Fig. 8.  2nd example for the drawing specification for lead. 

3.1. Examples 

The performance of the proposed algorithm is demon-

strated in the next two examples. On top of each figure, the 

original surface with the measured lead structure is pictured. 

Below the original surface, the reconstructed lead structure 

calculated according to equation (15) is shown. The good-

ness of the fit is visualised in the profile plot at the bottom. 

Shown is one trace of the original surface and the cor-

responding trace of the reconstructed surface. 



Example 1 grinded surface (see Fig. 9) 

In this example a lead structure with thirty threads is de-

tected. Because the number of threads is greater than 15 the 

finer grid over 36° has to be used. The lead depth is Dt = 

1.78µm. The structure is a result of the dressing-procedure 

of the grinding disc. The high number of threads and the 

high lead depth leads to a conveying action of the fluid to be 

sealed in. The surface is not tight and the work piece must 

be rejected. 

 

Fig. 9.  Original and reconstructed lead structure of a 

grinded surface. 

Example 2 turned surface (see Fig. 10) 

In this case a turned surface is analysed by the 2
nd

 gene-

ration lead algorithm. 

 

Fig. 10.  Original and reconstructed lead structure of a 

turned surface. 

The structure has one thread in circumferential direction. 

The lead depth is Dt = 3.34µm. As shown in the profile 

picture the lead structure is well approximated. In spite of its 

distinct structure the surface is tight because of the occur-

rence of only one thread. 

4.  CONCLUSIONS 

In this paper the 2
nd

 generation lead measurement was 

introduced. Lead is a periodically structure on the surface 

which leads to leak-tightness between a shaft and its sealing 

ring. The basis for the lead evaluation is formed by 136 

profile traces per perimeter of the work piece. The mea-

surement can be carried out by using a standard form tester 

with a surface texture probe or optical point sensor e.g. a 

confocal chromatic sensor. The function relevant periodical 

structures are detected and reconstructed by a fast algorithm 

based on superimposed complex exponential functions. It is 

shown that the projection matrices are separable. The func-

tion relevant structure is characterised by 6 parameters de-

rived from the reconstructed surface. The 2
nd

 generation lead 

measurement will be implemented in the standard measure-

ment software of BMT Breitmeier Messtechnik, Mahr and 

Hommel-Etamic in 2009. 
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