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Abstract  The modern measurement instruments 

involved in telecommunication systems are generally based 

on suitable digital signal processing methods which provide 

the desired quantities by elaborating the digitized samples. 

To meet the accuracy and repeatability required by the 

telecommunication applications and to warrant the alias-free 

sampling (Nyquist-Shannon theorem), the measurement 

instruments are usually forced to operate with high sampling 

frequencies, long observation periods and very fast 

measurement algorithms. It is worth noting that fixed the 

observation period, a reduction in the sampling rate directly 

leads to a reduction in the number of samples to be stored in 

memory, and consequently in the computational burden and 

the processing time of the measurement algorithm. If 

bandpass signals are involved, as it happens in modern 

telecommunication systems, the bandpass sampling theory 

could be employed to significantly reduce the sampling rate, 

without any replica overlapping. This opportunity is very 

attractive for both instrument designers and users since it 

allows optimizing the hardware resources through a more 

efficient employment.  

The choice of the bandpass sampling rate is a not trivial 

task, and wrong values may cause aliasing phenomena and 

affect the accuracy of measurement results. In this paper, 

two original algorithms, particularly useful to both 

instrument designers and users, are proposed to 

automatically select the sampling rate when bandpass 

signals have to be measured. To assess and validate the 

efficiency and the suitability of bandpass sampling criteria 

proposed, preliminary tests were performed on emulated 

DVB-T signals. 

Keywords: Bandpass sampling, data acquisition system, 
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1. INTRODUCTION 

Nowadays telecommunication technology is subjected to 

a continuous evolution. The arising and wide diffusion of 

the innovative communication systems leads to the 

realization of innovative measurement instruments able to 

reliably characterize these systems and to evaluate their 

compliance to new standards and regulations. 

Generally these modern instruments are based on digital 

signal processing methods, that allow to evaluate some 

specific information by using a suitable processing of the 

samples of the input signal. 

To avoid aliasing and to obtain a good performance in 

terms of accuracy and repeatability and to they are designed 

to work with very fast sampling rates, wide acquisition 

intervals, and very fast measurement algorithms. These 

features fix hard constraints to the hardware to be used. In 

particular, to assure wide acquisition intervals in presence of 

fast sampling rate, it is necessary to have a lot of memory 

installed on board. In addition, high performance processing 

units have to be used to achieve adequate measurement rates 

(in many cases a real-time operating is also required). 

Obviously, all these characteristics significantly influence 

the instrument cost. 

Fortunately, in modern telecommunication applications, 

a special class of signals is widely adopted, they are called 

bandpass signals and are characterized by a low ratio of 

bandwidth B to carrier frequency fC. In such cases, the 

necessary condition for the alias-free sampling becomes 

fS>2B, where B is the bilateral bandwidth of the baseband 

spectrum and fS denotes the sampling rate [1]. Then, it is 

possible to alias-free sample band-pass signals at a rate 

much lower than twice the upper frequency component of 

the signal fu (Nyquist rate). Since this condition is not 

sufficient, the sampling rate has to be chosen very carefully, 

otherwise aliasing can occur even though fS>2B [1-3]. 

In [4], Angrisani et Al. proposed two methods for 

automatic selection of the sample rate for bandpass signals 

that meet a very common requirement in electronic 

measurements. In particular, given the signal bandwidth and 

its centre frequency, the idea is to select the minimum value 

of fS among those allowed, which implies the allocation of a 

replica of the spectrum at a centre frequency chosen by the 

user. 

In the development of measurement instrumentation two 

other conditions may be very helpful: (a) to estimate the 

minimum sampling rate allowable; (b) to calculate the 

minimum admissible fS that is submultiple of the fixed 

sampling rate of an given analog-to-digital converter 

(ADC). These conditions could be very useful to design a 

cost effective measurement instrument able to warrant a 

correct signal analysis by using limited hardware resources. 

Starting from these considerations in this paper the 

authors propose two new algorithms for the selection of 

bandpass sampling rate.  

The former, given the input signal characteristics in 

terms of bandwidth and center frequency, selects the 

minimum admissible fS. This condition minimizes the 

overall hardware resources and optimizes the memory buffer 



over the observation time. This algorithm can be particularly 

useful for the instrument designer that at the design stage, on 

the basis of the specific application, can minimize the 

hardware resources required (in terms of ADC rate, memory 

buffer, processing unit performance).The latter, given the 

input signal characteristics in terms of bandwidth and center 

frequency, selects the minimum admissible fS that is 

submultiple of the fixed sampling rate of an ADC. This 

second algorithm permits minimizing the memory resources 

and processing unit performance when the ADC and the 

sampling frequency are given. In particular, it is useful in 

such cases where, for an existing ADC stage, the user can 

select the sampling rate only by using a simple prescaler 

factor. It often happens in the development or in the use of 

measurement instruments which are not equipped with 

sophisticated phase locked loop (PLL) oscillator. 

In the following a summary of bandpass sampling theory 

is presented in Section 2; analytical details of the two 

algorithms are given in Section 3 and the results of some 

experiments, carried out on emulated DVB-T 

telecommunication signals are presented in Section 4. At 

least in Section 5 some conclusive considerations are 

reported. 

2. SUMMARY OF BANDPASS SAMPLING THEORY 

As well known, when a band-limited analogue signal s(t) 

is sampled, the spectrum of its sampled version is composed 

by an infinite set of replicas of the original spectrum 

centered at integer multiples of the sampling rate fS, as 

described by the following relation 
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where S(f) denoted the spectrum of the sampled signal and 
S(f) the spectrum of s(t). To avoid the superimposition of the 
replicas, phenomenon known as aliasing, the Nyquist-
Shannon theorem imposes a lower limit to fS. This limit is 
called Nyquist rate and is equal to 2fu, where fu is the upper 
frequency component of S(f). 

Typical telecommunication signals are characterized by 

a high carrier frequency to bandwidth ratio (fc/B>>1) with 

the spectrum null in the bandwidth [0-fc-B/2] (see Fig. 1a). 

These peculiarities allow resorting to the bandpass sampling 

theory to select a sampling rate much lower than the Nyquist 

one, without any replicas overlapping in the 

abovementioned bandwidth.  

In general, the infinite set of replicas are centered at the 

frequencies [4] 
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Thanks to the periodicity of the spectrum of the sampled 

signal, the analysis can be limited to the interval [0-fS]. Only 

two frequencies that belong to (2) are inside this interval. 

Their values are respectively 
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and 
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where mod(x,y) denotes the remainder after division x/y. 

Considering that (3) and (4) are symmetrical respect to 

fS/2 and ignoring for the moment the case f1,1=0 (i. e. fS 

submultiple of fc), to avoid aliasing the following condition 

has to be respected 
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where f
*
=min(f1,1, f2,2). This condition implies that the 

replica is totally inside the interval [0-fS/2]. An example of 

this condition is represented in Fig. 1b. 

The particular case that verifies f1,1=0 produces a replica, 

characterized by an amplitude twice S(f) and a phase 

spectrum identically null, due to the superimposition of the 

positive and negative replicas, permitting only measurement 

on the power spectrum. 

If the condition (5) is verified, it implies that S(f) is totally 

included in a fS/2 wide interval i.e. 
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where fl is the lower frequency component of S(f) and n is an 

integer value greater than one. 

Solving (6) respect fS the following condition can be 

obtained 
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As previous said, the lower value of n is 1 and it is the 

special case analyzed in the Nyquist-Shannon theorem, 

instead the higher value of n admissible can be easily 

derived from (7) 
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Generally (8) is not an integer number, for this reason n is 

limited in the following range 
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where Ig denotes the integer part. The condition (7) 

combined with (9) is called condition for uniform bandpass 

 
Fig. 1. a) Spectrum of a bandpass signal, in red the positive side and 

in orange the negative side; b) effects of bandpass sampling, in light 

red and in light orange are the replicas of the positive side and the 

negative side of the spectrum respectively. 



sampling rate [1]. 

Supposing that the ratio n=fu/B is integer and substituting 

it in the left side of (7), the theoretical minimum sampling 

rate fS=2B can be found [1]. 

When fl and fu are fixed, this condition indicates that 

there are n sets of admissible fS. Chosen an allowable value 

of n means specify a set in which several values of fS can be 

selected. The fS choice is a very important task for an 

instrumentation designer, because it will fix the spectral 

allocation of the replicas and the distances between them. 

These distances usually are called guard bands and are 

denoted as 

 ,GT GL GUB B B   (10) 

where BGL and BGU are the lower and the upper guard bands 

respectively. 

Called fS the n-th range width, it can be divided into 

values above and below the selected operating point f
*
S as 

specified by the following relations 
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with fS,min and fS,max the lower and upper bound of the range 

respectively. The upper and lower guard bands can be easily 

derived as follows [1] 
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3. THE PROPOSED ALGORITHMS 

As shown in the previous section, the sampling rate can 

be selected in several sets of values and its choice influences 

the spectral allocations of the replicas. 

Generally, the instrumentation designer has to select the 

sampling rate according to the following very common 

constraints: 

(i) the measurement section of the instrument is often 

optimized to operate in a specified range of frequencies. 

Therefore it could be useful to select a sampling rate which 

allows the replica of S(f) to be allocated inside that range; 

(ii) cost effective instruments are usually made with 

hardware characterized by limited resources mainly in terms 

of on board memory and clock rates, thus demanding to 

select the minimum allowable sampling rate; 

(iii) the ADC is often driven by the unique clock 

present on the measurement instrument and the operating 

frequencies have to be chosen by applying suitable integer 

decimation procedure. Therefore these values can be chosen 

only as submultiples of the fixed operating sampling rate. 

Angrisani et al. in [4] have proposed two methods for 

automatic selection of the sample rate for bandpass signals 

that satisfy the first above cited constraint. In this paper the 

authors propose two original algorithms that allow satisfying 

also the constraints (ii) and (iii). 

3.1. Algorithm I 

This algorithm makes the selection of the minimum 

 

Fig. 2. Block diagram of the algorithm I. 

 

Fig. 3. Block diagram of the algorithm II. 



admissible sample rate and informs about the position of f
*
, 

for a given signal characterized by an upper frequency 

component fu and a bandwidth B. The user can also specify 

the guard bands BGL and BGU. A block diagram that 

illustrates the operative steps executed by this algorithm is 

depicted in Fig. 2. 

At first it evaluates the value of n to estimate how many 

sets of fS are available. Successively it verifies if the guard 

band (BGT) requested by the user is equal to zero. If this 

hypothesis is true, the algorithm output is the minimum fS in 

the set of order n, otherwise it starts to verify if the 

maximum lower and upper guard band available in the n-th 

set (BGL,n,max, BGU,n,max) are compatible with the guard bands 

specified by the user. If this check is negative the algorithm 

makes an iterative analysis for the n-1 remaining sets, until a 

set that satisfies these conditions is found. 

When a candidate set is found, it checks the 

contemporary compliance of the two guard band conditions 

in the following way; at first it calculates fSl related to the 

operative point characterized by an upper guard band equal 

to that specified by the user  

 

, ,max

,GU
Sl S

GU n

B
f f

B
    (14) 

Then it evaluates the lower guard band related to the 

selected operative point (BGL,x) (equation 12). If BGL,x is 

greater or equal than BGL the algorithm outputs fS and f
*
. 

Otherwise it restart the analysis for the remaining set until 

n=1. If no sets can satisfy the conditions imposed by the 

user the algorithm outputs the Nyquist rate and gives a 

warning in reducing the guard bands. A Matlab
TM

 

implementation of this algorithm can be found in [5].  

3.2. Algorithm II 

This second algorithm has been developed to give a 

passband answer when integer submultiples of the fixed 

operating sampling rate are available (constrain iii). It 

accepts as inputs the upper frequency component fu, the 

signal bandwidth B, and the ADC sampling rate fADC, and 

makes the selection of the minimum admissible sampling 

rate that is a submultiple of fADC such as 
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The maximum value of p has been fixed to avoid the 

selection of sample rate lower than 2B and p=1 has been 

neglected because it coincides with the obvious case fS=fADC. 

Substituting (15) in (7) the following condition is 

obtained 
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that in combination with (9) and (15) allows to choose the 

minimum admissible sampling rate submultiple of fADC. 

We can note that (16) depends on p and n, as a 

consequence the algorithm analyzes all possible 

combination of these factors. If more combination verify the 

(16), it returns the solution that involves the highest value of 

p, granting the lowest value of fS. The operative steps 

executed by this algorithm are depicted in Fig. 3, and its 

Matlab implementation is available in [5]. 

4. ALGHORITMS ASSESSMENT 

Preliminary experiments have been executed to assess 

and validate the efficiency of the proposed bandpass 

sampling rate algorithms. Emulated DVB-T signals have 

been involved. 

To these aims a measurement station, sketched in Fig. 4, 

was setup and properly characterized. It involves a RF 

signal generator (Agilent Technologies
TM

 E4438C) 

equipped with DVB-T personalities and used to provide 

DVB-T signals having the following transmission settings: 

8k transmission mode (k=6817 and Tu=896 μs), 1/4 (Δ=224 

μs) and 1/32 (Δ=28 μs) guard intervals, center frequency 

equal to 610 MHz, nominal total power of -10 dBm 

(100 W), 64-QAM modulation scheme, code rate equal to 

1/2, and 7.61 MHz bandwidth [6].  

The generated DVB-T signal was sampled by a DAS, 

namely a LeCroy
TM

 WavePro 7300A. The sampling circuit 

of the DAS was driven by a reference clock signal provided 

by a Rohde & Schwarz
TM

 SM300 RF signal generator. All 

the devices that compose the measurement station were 

controlled by a suitable LabVIEW driver that runs on the 

control unit, namely a personal computer, by using three 

different bus, an IEEE-488 bus, an Ethernet bus and an USB 

bus. 

The incoming signal was sampled considering three 

different sampling rates: 2.5 GS/s, 33.33 MS/s, and 

16.158 MS/s. The first one respects the limit imposed by the 

Nyquist-Shannon theorem, the other two are the bandpass 

sampling rates provided by the proposed algorithms. In 

particular, 33.33 MS/s is the slowest bandpass sampling rate 

that is an integer submultiple of fADC=100 MS/s, whereas 

16.158 MS/s is the minimum bandpass sampling rate 

allowable. These values are obtained imposing the following 

inputs: fu=614 MHz, B=8 MHz and BGL=BGU equal to null. 

This hypothesis can be done because the imposed bandwidth 

value overestimates the DVB-T nominal bandwidth. 

The influence of the proposed bandpass sampling 

algorithms on the metrological performance were tested on 

some measurements typical in radio frequency systems. 

In particular, for each guard interval and sampling rate, 

50 tests were executed and the following figures of merit 

have been analyzed: 

a) the mean value of the channel power measurement 

results (PC) computed by integrating the power spectrum 

density (PSD) in the nominal channel bandwidth; 

b) the experimental standard deviation of the channel 

 
 

Fig. 4. The designed measurement station. 



power measurement results (C); 

c) the difference (C) between the channel power 

measured on the Nyquist sampled signal and the channel 

power measured on the bandpass sampled signal; 

d) the mean value of the occupied bandwidth 

measurement results (B) computed as the frequency range in 

which is collocated the 99% of the input signal power; 

e) the experimental standard deviation of the occupied 

bandwidth measurement results (B); 

f) the difference (B) between the occupied bandwidth 

measured on the Nyquist sampled signal and the occupied 

bandwidth measured on the bandpass sampled signal. 

For each signal acquired its PSD estimate was evaluated 

using two different PSD estimators: the modified 

periodogram [7], [8] and Burg [9]. 

The former is a nonparametric estimator of the PSD, that 

computes the modified periodogram of the input signal. It 

weighs the samples of the signal by using a window with the 

aim of reducing the estimation bias. The latter belongs to the 

parametric estimator class; it supposes that the analyzing 

signal is the output of a m-order autoregressive model. 

For the evaluation of the modified periodogram a Hamming 

window was used. As far as the Burg estimator is 

concerned, a model order (m) equal to 3000 and 300 [10] 

was considered for the sampled signals at 2.5 GS/s and at 

the selected bandpass sampling rates, respectively. 

The measurement results reported in Table. 1 are 

achieved by considering a guard interval equal to 224 s and 

an acquired record length equivalent to a time interval equal 

to 1/4 of DVB-T symbol. It is possible to highlight that: 

1. power measurement results evaluated by using both 

the proposed bandpass sampling rates differ from that 

obtained by adopting a sampling rate equal to 2.5 GS/s of a 

quantity ever lower than 2.66%, that corresponds to 

0.11 dB; 

2. the repeatability of the channel power measurement 

results does not seem to be influenced by the three sampling 

rates; 

3. the measurement results of the occupied bandwidth 

obtained by using the modified periodogram estimator show 

a little bias that in the worst case (16.158 MS/s) is equal to 

3.90%. This experienced bias might be dependent by the 

hypothesis made on the signal bandwidth. As previous said, 

this rate has been obtained by imposing a total guard band 

equal to zero. Even though this condition theoretically 

assures that the replicas are not overlapped, practically it 

does not warrant an adequate gap between two adjacent 

replicas, thus affecting the measurement results. The PSD 

obtained by using the modified periodogram estimator on 

the sampled signal at the above mentioned three sampling 

rates are depicted in Fig. 5; 

4. as far as the measurement results of the occupied 

bandwidth obtained using the Burg estimator is concerned, it 

is possible to report similar considerations obtained for the 

modified periodogram case. It is worth nothing that the 

reference case (sampling rate equal to 2.5 GS/s) has been 

evaluated by using a model order equal to 3000, instead in 

the other cases m=300 has been adopted. In fact passband 

sampling allows to reduce the number of samples stored in 

the memory, in this way it is possible to use a lower model 

Table 1.  Measurement results. 
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PC [W] 85.65 84.56 87.88 

C [W] 0.53 0.66 0.60 

C [W]  -1.09 2.61 

B [MHz] 7.5275 7.5353 7.8213 

B [MHz] 0.0041 0.0044 0.0087 

B [MHz]  0.0079 0.2938 
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PC [W] 85.64 84.68 87.92 

C [W] 0.46 0.37 0.45 

C [W]  -0.96 2.28 

B [MHz] 7.5435 7.5388 7.8179 

B [MHz] 0.0034 0.0029 0.0059 

B [MHz]  -0.0045 0.2744 

 

 

 
Fig. 5. PSD estimates at different sampling rates: a) 2.5 GS/s,  

b) 33.33 MS/s and c) 16.158 MS/s. Modified periodogram 

estimator is involved. 
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order of the estimator, increasing the processing speed, 

without worsening the repeatability. The obtained PSD by 

using the Burg estimator on the sampled signal at the above 

mentioned three sampling rates are depicted in Fig. 6 and 

Fig. 7. 

The same tests have been performed by considering a 

record length equivalent to a time interval equal to 1/4 of 

DVB-T symbol and Δ=28 μs achieving similar results. 

5. CONCLUSIONS 

Two methods for the optimal bandpass sampling rate 

selection in RF measurement instrumentation has been 

developed and applied with success on channel power 

measurement and occupied bandwidth measurements on 

DVB-T signals. 

The measurement results, obtained by the tests 

performed with real hardware and involving emulated 

signals, have shown that the employment of the bandpass 

sampling do not worsen the measures of typical RF and 

telecommunications parameters. 

In particular, as the channel power measurement results 

concern, a tiny bias has been experienced.  

As far as the measurement results of the occupied 

bandwidth is concerned, they seem to be influenced by the 

bandpass sampling rates, in particular even though the 

minimum sampling rate, obtained by imposing a total guard 

band equal to null, should assure that the replicas are not 

superimposed, it does not warrant an adequate gap between 

two adjacent replicas, thus affecting the measurement 

results. Moreover the bandpass sampling allows to use Burg 

model order lower than the optimum value for the 2.5 GS/s 

case, without worsening the repeatability. 
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Fig. 6. PSD estimates at different sampling rates: a) 2.5 GS/s,  

b) 33.33 MS/s and c) 16.158 MS/s. Burg estimator is involved. 

Fig. 7. PSD estimate at 2.5 GS/s. Burg estimator and a model order 

m=300 are involved. 
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