XIX IMEKO World Congress
Fundamental and Applied Metrology
September 611, 2009, Lisbon, Portugal

UNCERTAINTY EVALUATION OF DYNAMIC MEASUREMENTSIN LINE
WITH THE GUM

Clemens ElsterSascha Eichstadt, Alfred Link

Physikalisch-Technische Bundesanstalt, Germanynéies.Elster@ptb.de

Abstract - We consider the task of uncertainty processing (DSP) [3] are used for proper analysis] in
evaluation in the context of dynamic measuremews. particular digital filters are applied for the coemsation of
assume that the relation between the time-dependdné the non-perfect dynamic behavior of an employedssen
of the measurand and the available output signabrof cf., e.g., [4-7].
employed sensor is governed by a linear time-iaweri
system. Estimation of the measurand is done byyamph Uncertainty considerations such as the varianc¢hef
digital filter to the sensor's output signal. Weopose a output signal of a linear time-invariant (LTI) sgst driven
method for uncertainty evaluation which is in liwith the by a noise process have widely been consideredSR.D
Guide to the Expression of Uncertainty in Measungime Unlike the GUM or GUM S1, however, these concepés a
(GUM). The method accounts for dynamic errors doe tusually based on classical statistics. Uncertaistythen
non-perfect compensation of the dynamic behaviothef characterized in terms of an estimate of the samgpli
sensor, and it allows for real-time calculation wieecausal variance of the considered estimator of the measira
digital filter is employed. The proposed uncertaint which may be accompanied by an upper bound of the
calculation method can be used to design an umelrta Systematic error (in this context called dynamimgr The
optimum filter. We illustrate the procedures inmerof a GUM, on the other hand, provides a consistentrreat of

simple example. uncertainties stemming from random and systematmrs
The main task of uncertainty evaluation for dynamic
Keywords: Uncertainty, LTI System, Digital Filter measurements thus seems to align the techniquels wel
known in DSP with the framework of uncertainty exalon
1. INTRODUCTION in metrology. While the current guidelines [1,2}veino

explicit guidance for uncertainty evaluation in dymc

Measurement results need to be accompanied by raeasurements, their methodology can be adoptedniso t
statement on their accuracy. This is in particitaportant ~case when DSP is considered and this paper gives au
in metrology which is concerned with the establishinof — attempt.
measurement units and the realization of measuremen
standards. In metrology, uncertainty is evaluatecbading After having stated the generic task to be consitiewe
to the Guide to the Expression of Uncertainty inshow that the current guidelines for uncertaintpleation
Measuremen{GUM) [1]. A key feature of the GUM is the are readily applicable. When the dynamic error @ n
‘propagation of uncertainties’ assuming a modehtieh ~ negligible, it needs to be taken into account. Bosd, we
between the measurand and all its influencing diiesitin ~ give a bound on the dynamic error. Utilizing thisubd, the
a recent supplement to the GUM (GUM S1, [2]), theuncertainty due to a remaining dynamic error cantbe
propagation of uncertainties is replaced by thepagation accounted for in a straightforward way accordingthe
of (degree-of-belief) probability density functiof@DFs). GUM. When a causal digital filter is applied, caitions
Once the model relation for the measurand has beénay be carried out in real-time. The resulting coret
established and the PDFs associated with all igpantities ~ uncertainty also allows for the design of an uraisty-
have been assigned, the calculation of the PDFciged optimum filter. We finally illustrate the proposedocedures
with the measurand is done according to the rules dnterms of a simple example.
probability theory; for this, GUM S1 provides ansgdo-
use calculation method based on a Monte-Carlo proee

The goal of dynamic measurements can be viewekeas t
task to determine a measurand having a time-depénde
value, where the available data from an employedaeis a
time series whose values at a particular time dépzm
present anghastvalues of the measurand. As a consequence,
the measurand cannot be determined utilizing oihly t
sensor's static properties. Tools from digital sign
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2. PROBLEM SPECIFICATION AND ASSUMPTIONS

x,(1)— LT [—— y,(2)
|
ADC
l
x[n] digital filter] y|n]

Fig. 1. lllustration of the considered task of analysis.

range, followed by a low-pass filter. Note that ttigital
filter (3) may contain a different number of paraens than
the continuous-time system function (2). The pdgdime-
shifted discrete-time estimategn] of xn] = x.(n(T,) are

then obtained by the application of the digitatefilg,, 5[N]
to the sensor output data

{n-ngl =(g, 5 OY)Inl, (@)

where n, denotes the known time shift. The task to be
considered is that of determining the uncertainties
u(X{n-n,]) associated with these estimates in line with
GUM or GUM S1, respectively. When the digital filidoes

not perfectly compensate the dynamic behavior @& th
sensor, remaining dynamic errors need to be takém i

The time-dependent valug.(t) of a measurand acts as account. To this end, some knowledge about the unaad

the input to a sensor and it is to be determinednfthe
sensor’'s output signaly[n] =y.(n[T,), for which an

estimate is available after analogue-to-digital veysion

(ADC), cf. Fig. 1; f,=1/T, denotes the sampling frequency.

The available datay{n] is assumed to be related t§n]
according toy[n] = y[n] +€n], where the ADC errorg{n|
are modeled by a stationary, zero mean random gsogith
known autocovariance functionR(n—m) = E(dn]gm]).

The relation betweery (t) and x(t) shall be described by
an LTI system according to

is required, and we assume knowledge about an upper
bound X (w) on the modulus of the continuous-time Fourier
transform

(®)

of the measurand. Note that when a static analgsis
applied, the *filter’ g, [n] would simply scale the output

|Xe(a)| = X(e)

signal according to the static properties of thesee

3. UNCERTAINTY EVALUATION

Ye(t) = (hy DX )() 1) The model in terms of the GUM relating the measdran
where h,(t) denotes its impulse responsg,(t) is XN =x(n0s) to its input quantities is given by
parameterized by _ the pa_rametgr vector n-ng] = (gﬂw) Dy) [n]+A[n], (6)
0=(ay.a,...,.by,b,,..)"T which determines its system
function according to where A[n] denotes the dynamic error, amg a possible
_ . (and known) time shift implied by the constructiohthe
Hy(s) = ZQS'/ZajS‘ : (2)  compensation filterg,, 4[N, cf. [6]. The parameter@, the

We assume that an estimage including its variance-

sensor output signay{n] = y.(n,) as well as the dynamic

covariance matriX; is available. This requires that system 0" A[n] are considered as the input quantities.

identification [8] using an adequate dynamic modtek
already been carried out, and that uncertaintids@with

According to GUM, estimates{n-n,] of xn-n,] are

the GUM have been assigned to the obtained parameigy,ine by inserting the estimates f@r (and hence for

estimates, cf. [9].

We consider the application of a digital filtey, s [n]
with system function

G,(2=>.dz" /> ¢z’ 3)

to the sensor output signg|n] , where u(@) indicates a
mapping from the parametets of h,(t) to the parameters
u=(Cy,C,...,0g,dq,...) of the digital filter (3). The

mapping u(#) is characterized by the way the digital filter

is constructed. For instance,[n] could result from an
adjustment of its frequency response to the recgiro

frequency response di,(t) within some chosen frequency

u(0)), for y[n] and for A[n] into (6). The estimates fa?
and y[n] are given byé and the datay[n] . For the former,
U, contains the required uncertainties, while for liger
the uncertaintiesu(y{n], ym]) = R(n—m) are assigned in

accordance with the autocovariance function
R(n—m) = E(gn]dm]) of the noise process modeling ADC

errors, cf. [6]. Regarding the (unknown) dynamimerthe
approximate bound

ﬂs . . ja—
\A[n]\ < %Tj‘eJ“‘O’sty(&)(eW”S)H&(jw)—]4D((a))dw (7)
-7t

=y
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is employed which can be derived by application
Fourier techniques. This bound, obtained for thecrdite-
time processing applied here, is similar to a bogiven in
[10] for continuous-time processing. We assign &oam

ofcontent for non-zero frequencies, a large boundremte a

large uncertainty will result. Note further that eth
uncertainty associated with the dynamic error can b
controlled by the design of the digital filter, atids can be

PDF for A[n] on [-y,y]. As a consequence, the estimateused to design an uncertainty-optimal filter.

A[n]=0 of the dynamic error is obtained together with

u(A[n]) = y/\/§ uniformly for all n.
The uncertainties associated with tRgn—n,] are then
according to (6) obtained as

uA(&n-no)) =u?{(g, 5, 09)n] }+ u?(An))
=U2 g,u(é) Dg’ [n]}+y2 /13
where y is given by (7).

The first term on the right-hand side of (8) acdsuier
the uncertainty of the output signal and the estisaf the
system parameters. It can be evaluated by thecapipln of
the Monte Carlo procedure described in GUM S1,rafte
assigning (multivariate) Gaussian PDFs to the
guantities@ and y[n] . Note that when applying GUM S1,

an estimate slightly different from that in (4) mde
obtained. Application of GUM S1 is possible only-tifie.
Nevertheless, from the perspective of a user itais
convenient way.

When the digital filter g, is of FIR-type, results

identical to a GUM S1 application can be obtaingalveal-
time calculation scheme [6]. For an IIR-type filter real-
time calculation scheme has been made possibleingila
state-space representation [11]. However,
calculation scheme is based on a first-order Taghkmies
expansion which may not yield appropriate resuttsall
cases since an IIR filter depends nonlinearly os it
parameters.

The second term on the right-hand side of (8) attou

input

4. EXAMPLE

We illustrate the uncertainty evaluation for theml-
order model

So
1+ (jowl ap)? +2jdwl ay

H(jow) = %

for which we assume the parameter estimates
f, =50+ 05kHz, 6= (2+02)D01 and § =1+0001 The

sampling frequency was chosen as 10 times the aesen
frequency f, =, /2n and the measurand as a Gaussian-like

signal x,(t) . Fig. 2 shows the magnitude responsgja)|
of this model together with the (normalized) speetrof the
measurand. In addition, the magnitude respquage’«’ )|

of the digital filter applied to estimate the mem@sd from
the output of the LTI system is also shown.
The measurand,(t) was passed through the LTI system

(9), and the output signal was subsequently digemgbtand
corrupted by white noise (with a standard deviatb0.1%
relative to the signal’s maximum). Using this outpignal,
the measurand was then estimated by the applicafidime
two compensation filters shown in Fig. 2. Bothefiik were
constructed as the cascade of an approximate iier
of FIR type derived from the parameter estimatethefLTlI
system and (different) low-pass filters, cf. [6} fitetails on

the rlatteonstructing the inverse filters. The uncertaintissociated

with the resulting estimates were then determirembiaing
to (8). As upper bound for the spectrum of the mesawd
we employed the magnitude of its actual spectruig. &
shows the resulting uncertainties.

20}
for the dynamic errors, i.e.y?/3 is the (squared)
uncertainty component which represents our lack of @ 0
knowledge about the actual value of the dynamicreNote A
that the dynamic error is a systematic error; wiepeating §
the measurement and the analysis for the same ragasu =2 -20/
the same (unknown) dynamic error will emerge. g
-40¢
It is worth briefly discussing the bound (7). Farde
1 jarg ! fg R jowl fg (i _ i ",
frequencies, the term‘e G, (€ *)H;(j0) q is 0, n o . o
expected to approach, and the integral is kept small by the frequency / kHz

decay of the upper boun&(w) of the spectrum of the

measurand. In order to keep the integral small simall
frequencies on the other hand, the

el 5 (e fS)Hé(ja))—l~ itself needs to be small
which requires that for these frequencies the diditter
compensates the dynamic behavior of the sensoe tiat
when a static analysis is applied akqw) has considerable

term

Fig. 2. Magnitude response of the LTI system (solid line) af
the two compensation filters (dashed lines), togettith the
(normalized) magnitude of the measurand (dotted).

The difference between the two compensation filters
that the first one (filter a) in Fig. 2) compensatee LTI
system also for larger frequencies. This leads teesenaller
uncertainties, but this holds not in general andejppends —
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among other things — on the size of the noise. |&aye

noise, it may be desirable to strongly suppressithse also
for smaller frequencies, thereby enlarging the dyisaerror.

The key point is that the combined uncertaintyg8younts
for both effects and it therefore allows for thenstuction
of a digital filter which yields an estimate withimmum

uncertainty.

x10°
4,

ooIizas o
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10 10.1 102
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Fig. 3. Normalized uncertainty obtained after applying the
compensation filters from Fig. 2. Lower curve:dila), upper
curve: filter b). Uncertainties were normalizedthg maximum
amplitude of the input signal.

5. CONCLUSIONS

Evaluation of uncertainties in line with the GUMsha
been considered for the task of estimating thetisfgnal of
an LTI system given its discretized output sigrialwas
assumed that the input signal is estimated by pipication
of a digital filter, and that an upper bound on thagnitude
of the spectrum of the measurand is availableaft been
shown that for this scenario the framework of tHéMGcan
be applied for uncertainty evaluation, also in phesence of
dynamic errors. A corresponding calculation schemas

(1]

(2]

(4]

(5]
(6]

(7]
(8]

(10]

(11]

been proposed and illustrated by an example. The

uncertainty calculation scheme may then be usedtHer
construction of a digital compensation filter whiasults in
an estimate with minimum uncertainty.
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