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Abstract − We consider the task of uncertainty 
evaluation in the context of dynamic measurements. We 
assume that the relation between the time-dependent value 
of the measurand and the available output signal of an 
employed sensor is governed by a linear time-invariant 
system. Estimation of the measurand is done by applying a 
digital filter to the sensor’s output signal. We propose a 
method for uncertainty evaluation which is in line with the 
Guide to the Expression of Uncertainty in Measurement 
(GUM). The method accounts for dynamic errors due to 
non-perfect compensation of the dynamic behavior of the 
sensor, and it allows for real-time calculation when a causal 
digital filter is employed. The proposed uncertainty 
calculation method can be used to design an uncertainty-
optimum filter. We illustrate the procedures in terms of a 
simple example. 
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1. INTRODUCTION 

Measurement results need to be accompanied by a 
statement on their accuracy. This is in particular important 
in metrology which is concerned with the establishment of 
measurement units and the realization of measurement 
standards. In metrology, uncertainty is evaluated according 
to the Guide to the Expression of Uncertainty in 
Measurement (GUM) [1]. A key feature of the GUM is the 
‘propagation of uncertainties’ assuming a model relation 
between the measurand and all its influencing quantities. In 
a recent supplement to the GUM (GUM S1, [2]), the 
propagation of uncertainties is replaced by the propagation 
of (degree-of-belief) probability density functions (PDFs). 
Once the model relation for the measurand has been 
established and the PDFs associated with all input quantities 
have been assigned, the calculation of the PDF associated 
with the measurand is done according to the rules of 
probability theory; for this, GUM S1 provides an easy-to-
use calculation method based on a Monte-Carlo procedure. 

 
The goal of dynamic measurements can be viewed as the 

task to determine a measurand having a time-dependent 
value, where the available data from an employed sensor is a 
time series whose values at a particular time depend on 
present and past values of the measurand. As a consequence, 
the measurand cannot be determined utilizing only the 
sensor’s static properties. Tools from digital signal 

processing (DSP) [3] are used for proper analysis, and in 
particular digital filters are applied for the compensation of 
the non-perfect dynamic behavior of an employed sensor, 
cf., e.g., [4-7]. 

 
Uncertainty considerations such as the variance of the 

output signal of a linear time-invariant (LTI) system driven 
by a noise process have widely been considered in DSP. 
Unlike the GUM or GUM S1, however, these concepts are 
usually based on classical statistics. Uncertainty is then 
characterized in terms of an estimate of the sampling 
variance of the considered estimator of the measurand, 
which may be accompanied by an upper bound of the 
systematic error (in this context called dynamic error). The 
GUM, on the other hand, provides a consistent treatment of 
uncertainties stemming from random and systematic errors. 
The main task of uncertainty evaluation for dynamic 
measurements thus seems to align the techniques well-
known in DSP with the framework of uncertainty evaluation 
in metrology. While the current guidelines [1,2] give no 
explicit guidance for uncertainty evaluation in dynamic 
measurements, their methodology can be adopted to this 
case when DSP is considered and this paper gives such an 
attempt. 

 
After having stated the generic task to be considered, we 

show that the current guidelines for uncertainty evaluation 
are readily applicable. When the dynamic error is not 
negligible, it needs to be taken into account. To do so, we 
give a bound on the dynamic error. Utilizing this bound, the 
uncertainty due to a remaining dynamic error can then be 
accounted for in a straightforward way according to the 
GUM. When a causal digital filter is applied, calculations 
may be carried out in real-time. The resulting combined 
uncertainty also allows for the design of an uncertainty-
optimum filter. We finally illustrate the proposed procedures 
in terms of a simple example. 

 



2. PROBLEM SPECIFICATION AND ASSUMPTIONS 

 

 

Fig. 1. Illustration of the considered task of analysis. 

The time-dependent value )(txc  of a measurand acts as 

the input to a sensor and it is to be determined from the 
sensor’s output signal )(][ sc Tnyny ⋅= , for which an 

estimate is available after analogue-to-digital conversion 
(ADC), cf. Fig. 1; ss Tf /1=  denotes the sampling frequency. 

The available data  ][ˆ ny  is assumed to be related to ][ny  

according to ][][][ˆ nenyny += , where the ADC errors ][ne  

are modeled by a stationary, zero mean random process with 
known autocovariance function ])[][(E)( menemnR =− . 

The relation between )(tyc  and )(txc  shall be described by 

an LTI system according to  

 ))(()( txhty cc ∗= θ   ,  (1) 

where )(thθ  denotes its impulse response. )(thθ  is 

parameterized by the parameter vector 
T

1010 ),,,,,( KK bbaa=θ  which determines its system 

function according to  

 ∑∑= j
j

i
i sasbsH )(θ . (2) 

We assume that an estimate θ̂  including its variance-
covariance matrix 

θ
U ˆ  is available. This requires that system 

identification [8] using an adequate dynamic model has 
already been carried out, and that uncertainties in line with 
the GUM have been assigned to the obtained parameter 
estimates, cf. [9]. 

 
We consider the application of a digital filter ][)( ng θµ  

with system function 

 ∑∑ −−= j
j

i
i zczdzG )(µ  (3) 

to the sensor output signal ][ny , where )(θµ  indicates a 

mapping from the parameters θ  of )(thθ  to the parameters 

),,,,,( 1010 KK ddcc=µ  of the digital filter (3). The 

mapping )(θµ  is characterized by the way the digital filter 

is constructed. For instance, ][)( ng θµ  could result from an 

adjustment of its frequency response to the reciprocal 
frequency response of )(thθ  within some chosen frequency 

range, followed by a low-pass filter. Note that the digital 
filter (3) may contain a different number of parameters than 
the continuous-time system function (2). The possibly time-
shifted discrete-time estimates ][ˆ nx  of )(][ sc Tnxnx ⋅=  are 

then obtained by the application of the digital filter ][)( ng θµ   

to the sensor output data 

 ( ) ][ˆ][ˆ
)ˆ(0 nygnnx ∗=−
θµ

, (4) 

where 0n  denotes the known time shift. The task to be 

considered is that of determining the uncertainties 
])[ˆ( 0nnxu −  associated with these estimates in line with 

GUM or GUM S1, respectively. When the digital filter does 
not perfectly compensate the dynamic behavior of the 
sensor, remaining dynamic errors need to be taken into 
account. To this end, some knowledge about the measurand 
is required, and we assume knowledge about an upper 

bound )(ωX  on the modulus of the continuous-time Fourier 

transform 

 )()( ωω XXc ≤  (5) 

of the measurand. Note that when a static analysis is 
applied, the ‘filter’ ][)( ng θµ  would simply scale the output 

signal according to the static properties of the sensor. 

3. UNCERTAINTY EVALUATION 

The model in terms of the GUM relating the measurand 
)(][ sc Tnxnx ⋅=  to its input quantities is given by 

 ( ) ][][][ )(0 nnygnnx ∆+∗=− θµ , (6) 

where ][n∆  denotes the dynamic error, and 0n  a possible 

(and known) time shift implied by the construction of the 
compensation filter ][)( ng θµ , cf. [6]. The parameters θ , the 

sensor output signal )(][ sc Tnyny ⋅=  as well as the dynamic 

error ][n∆  are considered as the input quantities. 

 

According to GUM, estimates ][ˆ 0nnx −  of ][ 0nnx −  are 

obtained by inserting the estimates for θ  (and hence for 
)(θµ ), for ][ny  and for ][n∆  into (6). The estimates for θ  

and ][ny  are given by θ̂  and the data ][ˆ ny . For the former, 

θ
U ˆ  contains the required uncertainties, while for the latter 

the uncertainties )(])[ˆ],[ˆ( mnRmynyu −=  are assigned in 

accordance with the autocovariance function 
])[][(E)( menemnR =−  of the noise process modeling ADC 

errors, cf. [6]. Regarding the (unknown) dynamic error, the 
approximate bound 
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is employed which can be derived by application of 
Fourier techniques. This bound, obtained for the discrete-
time processing applied here, is similar to a bound given in 
[10] for continuous-time processing. We assign a uniform 
PDF for ][n∆  on ],[ γγ− . As a consequence, the estimate 

0][ˆ =∆ n  of the dynamic error is obtained together with 

3/])[ˆ( γ=∆ nu  uniformly for all n . 

The uncertainties associated with the ][ˆ 0nnx −  are then 

according to (6) obtained as 
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where γ  is given by (7).  

 
The first term on the right-hand side of (8) accounts for 

the uncertainty of the output signal and the estimates of the 
system parameters. It can be evaluated by the application of 
the Monte Carlo procedure described in GUM S1, after 
assigning (multivariate) Gaussian PDFs to the input 
quantities θ  and ][ny . Note that when applying GUM S1, 

an estimate slightly different from that in (4) may be 
obtained. Application of GUM S1 is possible only off-line. 
Nevertheless, from the perspective of a user it is a 
convenient way. 

 
When the digital filter )(θµg  is of FIR-type, results 

identical to a GUM S1 application can be obtained by a real-
time calculation scheme [6]. For an IIR-type filter, a real-
time calculation scheme has been made possible utilizing a 
state-space representation [11]. However, the latter 
calculation scheme is based on a first-order Taylor series 
expansion which may not yield appropriate results in all 
cases since an IIR filter depends nonlinearly on its 
parameters. 

 
The second term on the right-hand side of (8) accounts 

for the dynamic errors, i.e. 3/2γ  is the (squared) 

uncertainty component which represents our lack of 
knowledge about the actual value of the dynamic error. Note 
that the dynamic error is a systematic error; when repeating 
the measurement and the analysis for the same measurand, 
the same (unknown) dynamic error will emerge. 

 
It is worth briefly discussing the bound (7). For large 

frequencies, the term 1)()( ˆ
/

)ˆ(
/0 −ωωω jHeGe ss fjfnj

θθµ
 is 

expected to approach 1, and the integral is kept small by the 

decay of the upper bound )(ωX  of the spectrum of the 

measurand. In order to keep the integral small for small 
frequencies on the other hand, the term 

1)()( ˆ
/

)ˆ(
/0 −ωωω jHeGe ss fjfnj

θθµ
 itself needs to be small 

which requires that for these frequencies the digital filter 
compensates the dynamic behavior of the sensor. Note that 

when a static analysis is applied and )(ωX  has considerable 

content for non-zero frequencies, a large bound and hence a 
large uncertainty will result. Note further that the 
uncertainty associated with the dynamic error can be 
controlled by the design of the digital filter, and this can be 
used to design an uncertainty-optimal filter. 

4. EXAMPLE 

We illustrate the uncertainty evaluation for the second-
order model 
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for which we assume the parameter estimates 

5.050ˆ
0 ±=f kHz, 01.0)2.02(ˆ ⋅±=δ  and 001.01ˆ0 ±=s . The 

sampling frequency was chosen as 10 times the resonance 
frequency πω 2/00 =f  and the measurand as a Gaussian-like 

signal )(txc . Fig. 2 shows the magnitude response |)(| ωjH  

of this model together with the (normalized) spectrum of the 
measurand. In addition, the magnitude response |)(| / sfjeG ω  

of the digital filter applied to estimate the measurand from 
the output of the LTI system is also shown. 

The measurand )(txc  was passed through the LTI system 

(9), and the output signal was subsequently discretized and 
corrupted by white noise (with a standard deviation of 0.1% 
relative to the signal’s maximum). Using this output signal, 
the measurand was then estimated by the application of the 
two compensation filters shown in Fig. 2. Both filters were 
constructed as the cascade of an approximate inverse filter 
of FIR type derived from the parameter estimates of the LTI 
system and (different) low-pass filters, cf. [6] for details on 
constructing the inverse filters. The uncertainties associated 
with the resulting estimates were then determined according 
to (8). As upper bound for the spectrum of the measurand 
we employed the magnitude of its actual spectrum. Fig. 3 
shows the resulting uncertainties. 

 

Fig. 2. Magnitude response of the LTI system (solid line) and of 
the two compensation filters (dashed lines), together with the 

(normalized) magnitude of the measurand (dotted). 

 
The difference between the two compensation filters is 

that the first one (filter a) in Fig. 2) compensates the LTI 
system also for larger frequencies. This leads here to smaller 
uncertainties, but this holds not in general and it depends – 



among other things – on the size of the noise. For large 
noise, it may be desirable to strongly suppress the noise also 
for smaller frequencies, thereby enlarging the dynamic error. 
The key point is that the combined uncertainty (8) accounts 
for both effects and it therefore allows for the construction 
of a digital filter which yields an estimate with minimum 
uncertainty. 

 

Fig. 3. Normalized uncertainty obtained after applying the 
compensation filters from Fig. 2. Lower curve: filter a), upper 

curve: filter b). Uncertainties were normalized by the maximum 
amplitude of the input signal. 

5. CONCLUSIONS 

Evaluation of uncertainties in line with the GUM has 
been considered for the task of estimating the input signal of 
an LTI system given its discretized output signal. It was 
assumed that the input signal is estimated by the application 
of a digital filter, and that an upper bound on the magnitude 
of the spectrum of the measurand is available. It has been 
shown that for this scenario the framework of the GUM can 
be applied for uncertainty evaluation, also in the presence of 
dynamic errors. A corresponding calculation scheme has 
been proposed and illustrated by an example. The 
uncertainty calculation scheme may then be used for the 
construction of a digital compensation filter which results in 
an estimate with minimum uncertainty. 
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