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Abstract − The assessment of the geometry of artefacts 

in length metrology is concerned with estimating dimension, 
form and roughness. While all three are positive quantities, 
the evaluation of form and roughness are problematic, 
mainly because the values of the parameters to be measured 
are often of the same order as the measurement uncertainty. 
Furthermore, random effects associated with a measurement 
system will in general bias the estimate of parameter. This 
paper discusses these issues, using a Bayesian approach in 
which prior distributions are used to ensure parameter 
estimates are physically meaningful. 
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1.  INTRODUCTION 

This paper addresses the problem of measurement of 
form and roughness in the presence of instrument systematic 
and random effects. Often, the order of magnitude of the 
parameter to be assessed, e.g., form error, is similar to that 
of the uncertainty of the measurement system. In evaluating 
the uncertainty associated with the fitted parameter, a 
standard GUM approach [1] is likely to define a coverage 
interval that includes negative values. Furthermore, the 
noise in the instrument can introduce significant bias in 
estimates of the geometrical parameters. For example, 
random effects associated with the measurement of a 
perfectly flat table will lead to a measured coordinates that 
do not lie exactly on a plane. Hence, any standard estimate 
of the flatness of the table based on the measured 
coordinates will yield a strictly positive estimate of the 
flatness. In this paper, we investigate approaches that aim to 
overcome difficulties of bias and at the same time reflect the 
positivity constraints associated with the parameters.  

In section 2, we describe parameter estimation problems 
associated with the measurement of surface roughness while 
in section 3 we examine form error assessment. Both 
problems can be formulated so that the main computational 
goal is to estimate two parameters  and  describing 
the statistical behaviour of the physical systems under study. 
Our concluding remarks are given in section 4. 
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2.  EXAMPLE: ROUGHNESS 

Let iζ  represent a set of heights of a profile taken at 
regular intervals along a straight line. The roughness 
parameter Rq associated with the heights is simply defined 
as the standard deviation ρ  of the .iζ  However, the 
roughness parameter has to be estimated on the basis of 
measured estimates  of the iz .iζ   If the observational 

model is  that is, given ),,(N| 2σζζ iiiz ∈ ,iζ iz  is a draw 
from a normal distribution with centred at iζ  with variance 

 then the expected value of the variance of the  is 

 Therefore, the variance of the  is a biased 

estimate of  Rq. If 
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.22 σρ + iz

σ  is known, and  is the observed 
variance of the measurements, an unbiased estimate r of 

2s
ρ  

is given by ( ) .
2/122 σ−= sr  However, for very smooth 

surfaces, there is no guarantee that the observed s  will be 
greater than σ  and the estimation method breaks down.  
Bayesian approaches [2] enable the positivity constraints on 
Rq to be catered for in a natural way through the use of prior 
distributions and allow the distribution for Rq to be derived. 
This distribution can then be used in determining optimal 
limits in assessing whether or not the surface conforms to its 
roughness specification. One approach is as follows. It is 
motivated by the fact that the parameters  and  are 
related to scale parameters representing measures of 
dispersion. We assign prior distributions for  and  of 
the form 
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where  and  These distributions encode 
a degree of belief in the prior estimate 
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0ρ  for ,ρ  for 
example, equivalent to that gained by observing the sum of 

squares  where each  is sampled from 

 In the case of roughness, significant prior 
knowledge about the instrument accuracy would be reflected 
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in a large value for ; little prior knowledge about the 
surface roughness would lead to a small value for .  
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0m
 We assume an observational model of the form 
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where the nuisance parameters α  and β  account for the 
linear alignment of the measuring instrument with the 
surface profile. The aim is to derive a state-of-knowledge 
distribution for  on the basis of the observations. (It is 

generally more convenient to work with  or  
rather than 

2ρ
2ρ 2/1 ρψ =

ρ  but the results can be expressed in either 

form.)  The lack of exact knowledge about  complicates 
the analysis [3]. If the parameters a and b specify the least 
squares best-fit line to the data points  
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is associated with a chi-squared distribution with 2−m  
degrees of freedom: 
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This allows us to calculate the probability  of 

observing F, given  and  Bayes’ theorem can then be 

applied to give the posterior distribution for  and  on 
the basis of the observed value of F and the prior 
distributions:  
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The posterior distribution  for  is obtained by 
marginalisation: 
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2.1 Example calculations 
 We have generated data for the cases m = 100, with prior 
distributions specified as in (3) with 1.00 =ρ  micrometres, 

, , and 20 =m 1000 =n =0σ 0.08, 0.10, 0.12 and 
0.15 micrometres. Fig. 1 shows the joint posterior 
distribution for the case 1.000 ==σρ  micrometres while 

Fig. 2 graphs the posterior distributions . As )|( 2 Fp ρ 0σ  
increases, the posterior distributions become more disperse, 
eventually converging to the prior distribution. 

3.  FORM ASSESSMENT AND CMM UNCERTAINTY 

 Coordinate measuring machines (CMMs) are important 
measurement systems in assessing critical quality 
characteristics in manufacturing engineering. Form error is 
one of the features assessed and is a measure of the 
departure of a manufactured artefact from its ideal shape, 
specified in terms of standard geometric elements such as 
planes, spheres, cylinders, etc., or CAD representations such 
as parametric spline surfaces. The assessment of form error 

on the basis of measured coordinates will be influenced by 
the systematic and random effects associated with the CMM 
as well as the underlying geometry of the artefact being 
measured. Of particular importance are the parametric errors 
of the CMM that describe the non-ideal motion of the CMM 
probe as it moves within the working volume [4].  
 
 

 

Fig. 1. Posterior distribution  for the case )|,( Fp ρσ 22
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Fig. 2. Posterior distributions  for the cases )|( Fp ρ 2

1.00 =ρ  micrometres and =0σ 0.08, 0.10, 0.12 and 

0.15 micrometres.  The prior distribution  is also shown. )(ρp 2

3.1 Least squares form error assessment 
We assume that the CMM outputs measured coordinates 
, ix ,,,1 Xmi K=  nominally lying on the surface of an 

artefact whose ideal shape is given parametrically as 
 The parameters u and v determine the 

position of a point on the surface and the parameters b 
).,,(),( bs vuvu a



determine the shape and position of the surface. The least 
squares best-fit surface can be found [4] by minimising 
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where and  specify the point  on the 

surface closest to  and  is the normal vector at  The 
form error is estimated by 
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the  are the residual errors at the solution. Also of interest 
is the standard deviation s of the residuals. 
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3.2 Measurement model 
 We assume that the CMM measurement model is of the 
form 
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where  is the reported measured coordinates,  the true 
coordinates,  the systematic parametric error at  
depending on parameters a, and  is a random effect. We 
assume that the CMM has been calibrated so that estimates 
of a and its variance matrix  are available. The 

matrix  is fixed and the parameter  is a scaling 
factor for which there is prior information encoded in a 
distribution  This prior information can be provided 
in a calibration of the CMM’s parametric errors. The 
random effects are assumed to be independently distributed 
with standard deviation 
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3.3 Form error model 
We assume that the departure from ideal geometry is 

modelled as 
,**

iiii f nsx +=  
 
where  is the departure from nominal geometry, specified 
normal to the surface. We assume that the vector 

of departures from ideal geometry is 
drawn from a multinormal distribution with mean zero and 
variance matrix  where the matrix  is 

fixed and the parameter  is a scaling factor with 

associated prior distribution  For most engineering 
surfaces, the departure from ideal geometry varies smoothly 
across the surface so that the departure from ideal geometry 
will be similar for points close to each other. This 
correlation effect can be encoded in the matrix . For 
example, we can set 
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so that the correlation decays exponentially with the square 
of the distance between points. The  matrix M allows 
for the correlation behaviour to be different in different 

directions. The term 

33×

κ  allows for some variation at small 
scales due to roughness. 

Putting the measurement and form error models together 
we have  
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From the measurement data , we calculate a least squares 
best fit surface to the data, returning the residual vector 

 The main goal is to be able to determine 

an improved estimate of  (and potentially ) on the 
basis of the additional information provided by the observed 
residual vector d.  
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3.4 Effect of CMM uncertainty on form error 
assessment for ideal geometries 

Suppose  lies exactly on a surface with ideal 
geometry,  

*
is

iiii eaxpsx ++= ),(*  
represents CMM measurements and d the residual error 
vector. If J is the Jacobian matrix associated with the best-fit 

surface and  is its QR 

factorisation, then to first order  where h is the 

-vector storing  Uncertainties 
associated with a and the random effects associated with the 
CMM measurements are easily propagated through to d, so 
that the variance matrix  can be calculated.  
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CMM with scale and squareness errors [5] so that  
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The diagonal elements represent the scale errors along the 
three axes while the non-zero off-diagonal elements are the 
squareness errors. We assume there are 12 measured points 
on a cylinder of radius 50 mm, four points on three circles 
25 mm apart. We assume that 001.00 =τ mm and that  

T
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 is associated with  with  For this 
statistical model, the standard uncertainties associated with 
the point coordinates are of the order of 0.003 mm. From the 
statistical model so defined, the distribution 

for the residual vector can be calculated. We 
have generated 10,000 Monte Carlo samples  from this 

distribution and calculated the associated form errors  

and standard deviations  Histograms of the calculated 

 and  are shown in Figs. 3 and 4. The calculations 
indicate that the expected estimate of the form error, derived 
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from the residual vector, due to CMM uncertainty alone is 
almost 0.005 mm. 

3.5 Posterior estimate of  2ρ

The approach above can be extended to incorporate the 
form error model, with h now defined to be the  vector 

storing  The uncertainty information 
is propagated through to d and the associated variance 
matrix  now depends also on  This 
matrix will in fact be rank deficient. However, the projected 
residual vector  has associated variance 

matrix  which is full rank and allows us to 
calculate the probability distribution  
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for observing  given  and  (The dependence on 

and  is through ) An application of 
Bayes’ theorem enables us to calculate the posterior 
distribution  

,d̂ 2σ .2ρ
2σ 2ρ ).,( 22 ρσdd VV =
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3.6 Example calculations 

Fig. 5 shows the posterior distribution for  having 

observed the projected residuals d  associated with 
measuring a cylinder using a CMM with uncertainties 
associated with scale and squareness errors and three 
measurement strategies involving 12, 25 and 75 data points. 
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Fig. 3. Histogram of .  ,qE
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Fig. 4. Histogram of  .sq

The prior distributions for  and  are of the same 
form as (1), with 

2σ 2ρ
10 =σ  and  = 1000, signifying that the 

CMM is well characterised, and 
0n

005.00 =ρ mm and 
,50 =m  signifying little prior information about the surface 

form error. As the number of data points increases the 
posterior distribution becomes more peaked. For a small 
number of data points, the uncertainty associated with  is 
dominated by small sample effects (i.e., trying to estimate a 
standard deviation from a small sample). For a large number 
of points, the influence of CMM uncertainty becomes 
stronger. For the larger data set, the effect of correlation in 
the form error also becomes more important.  

2ρ

 The analysis is straightforward to implement in that it 
only requires linear algebra and simple quadrature. 
However, it does provide uncertainty information about 
form error that takes into account the CMM random and 
systematic effects, surface geometry and likely form error. 
In particular, the interaction between CMM parametric 
errors and form error is properly taken into account so that, 
for example, the uncertainty associated with a global scale 
parameter (that contributes to the uncertainties associated 
with all the coordinates) will not introduce form error where 
none exists.  

f
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Fig. 5. Prior (dotted) and posterior distributions for  for 12, 25 
and 75 data points. As the number of data points increases, the 

peaks for the posterior distributions become sharper. 
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3.7 Separating form and CMM error 
The analysis so far has examined the combined effect of 

CMM uncertainty and form error on the projected residuals 
associated with a least squares best fit of a surface to data. 
However, a more direct examination of the form error or 
CMM parametric errors from the residuals errors is often 
sought. For example, the measurement of a calibrated ring 
gauge with a very low form error will tell us something 
about the CMM parametric errors. Given   and  and 

observed projected residuals , posterior estimates  and 
of the machine error parameters and form error can be 

found by solving a linear least squares system 
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where the first set of equations describes the machine and 
form error contribution to the observed projected residuals, 
and the second and third sets represent the prior information 
about the machine and form errors.  
 Figs. 6 and 7 show the results of an application of this 
approach, this time concerning the measurement of 15 
points on a sphere, 5 points on three parallel circles. The 
graphs show how each residual can be decomposed as the 
sum of form error, machine error and random effects. The 
results in Fig. 6 concern the measurement of an artefact with 
significant form error. The observed residuals are attributed 
to the form error. Fig. 7 relates to the measurement of a 
calibrated sphere that has a form error of no more than 
0.000 5 mm. In this case, the residuals are explained mainly 
in terms of machine errors a. Examining the posterior 
estimate of the variance matrix associated with a shows that 
the standard uncertainties associated with the scale and 
squareness parameters are  

and can compared with the prior values of  The 
standard uncertainties in the squareness parameters are 

reduced more than the scale parameters. This is because a 
global increase in the scale will not affect the form error. 
However, posterior to the data, the scale error parameter 
estimates are now correlated; different scale errors along 
each axis are now very unlikely.  

)7.1,7.1,9.1,2.3,1.3,1.3(10 5 ×−

.105 5−×

 The analysis can be extended to include the case where 
the parameters  and  are no longer regarded as fixed. 
The fact that the parameters a and f appear linearly in the 
model means that they can be eliminated analytically in a 
marginalisation process in order to evaluate  
Perhaps more interesting is the use of reversal strategies that 
are able to give a much more concrete separation of the 
effects of form and machine error. These strategies are 
currently under study. 
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Fig. 6. Explanation of the observed residuals in terms of form 
error,  CMM machine errors (scale and squareness) and random 

effects. 
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Fig. 7. As Fig. 6, but for the measurement of a calibrated sphere 
with small form error.  

4.  CONCLUSIONS 

The GUM uncertainty framework can run into 
difficulties in limit-of-detection problems since the 



construction of coverage intervals based on measured values 
and associated expanded uncertainties will often lead to the 
inclusion of negative values in the category of “values that 
could reasonably be attributed to the measurand”. Bayesian 
methods, on the other hand, are capable of handling limit-of-
detection problems, as illustrated in the two case studies 
above. Having more reliable estimates of the surface 
roughness or form error will lead to smaller decision costs 
associated with conformance assessment [3, 6]. 
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