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Abstract − When testing an analog-to-digital converter 

(ADC) by automatic test equipment (ATE), the latter is 
capable of performing extensive processing of output 
responses of the ADC. This allows detection of virtually any 
fault. However, the cost of ATE is quite high. As well, the 
external bandwidth of ATE is normally lower than the 
internal bandwidth of the ADC being tested, which makes it 
difficult to accomplish at-speed testing. It is important, 
therefore, to embed test hardware into ADC itself. The 
methods employed at ATE are complex and inconvenient 
for built-in realization. More advantageous are the methods 
exploiting accumulation of output responses. The size of the 
accumulator depends on the number of responses. In order 
to achieve greater fault coverage, this number is kept large, 
complicating the implementation. On the other hand, 
signature analysis used in digital systems testing is well 
suited for compaction of “lengthy” responses, and it is 
characterized by small hardware overhead and low aliasing 
probability. In this work, we apply signature analysis 
principle for compaction of output responses of an ADC. 
The permissible tolerance bounds for a fault-free ADC are 
determined and the aliasing rate is estimated. Examples are 
given. 
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1.  INTRODUCTION 

Analog-to-digital converters are primary units of mixed-
signal systems that are responsible for the overall accuracy. 
These systems (e.g. measurement systems) may contain few 
ADCs and a common processing part implemented on a 
programmable device(s) [1]. Various ADCs are the essential 
part of many applications utilized in industry and research. 
Thus, their improper operation must be detected as soon and 
as efficiently as possible. ADCs are characterized by two 
possible types of failures: sudden failures and gradual 
failures. Gradual failures represent greater danger, since 
they may remain hidden over a long period of time. 

To be efficient, test hardware must be small and it must 
provide for low aliasing rate. Signature analysis has been 
digital systems testing technique that perfectly satisfies these 
requirements. In this method, inputs of a digital device 
under test (DUT) are fed by the sequence of test stimuli 
(normally exhaustive), whereas the output responses are 
compacted into a signature. The signature is compared with 

the one for the fault-free device. Their mismatch indicates 
that the DUT is faulty. 

Feeding inputs with the exhaustive sequence of stimuli 
increases fault coverage, but compaction of the output 
response causes some errors to escape detection due to 
aliasing. With the size of signature equal to 16, the aliasing 
rate is sufficiently low, such that the efficiency of the 
method is quite high. Because of these attractive features, 
signature analysis has gained considerable popularity. We 
will attempt to use similar technique for testing of ADCs. 

As applied to an ADC, exhaustive sequence of stimuli 
would include an infinite number of analog signals covering 
the full scale range. In practice, this number is limited to the 
characteristic points of the range. If ADC is a part of the 
measurement system that is intended to convert an active 
value (such as voltmeter), the test sequence can be generated 
on-chip by various types of precise waveform generators 
[2]-[4]. In the case of a system converting passive 
parameters (such as impedance meter), the input stimuli can 
be produced by high precision resistors and capacitors [5]. 

The methods of output response compaction for mixed-
signal systems can roughly be divided into two groups. The 
first group is based on extensive processing of the responses 
with further extraction and evaluation of the characteristic 
static or dynamic parameters of the transfer function of the 
system [2]-[8]. These methods involve a computing device 
and are complex for on-chip realization. 

The second group of methods is based on the estimation 
of the sum of the output words (vectors) [9], [10]. For the n-
bit ADC, the method requires a 2n-bit adder. In order to 
increase fault coverage, the number of test patterns (points) 
must be large enough. This significantly increases the size 
of the adder required. Obviously, compaction of the sum 
would save test hardware. The widely used method of 
compaction of digital data, signature analysis, is not 
applicable here, because of unavoidable quantization error 
existing in the conversion results. In error-control coding, 
situations like this are remedied by arithmetic (residue) 
codes, namely the modulo sum method. We will use this 
method for ADC response compaction referring to the 
residue as signature. We will also estimate the fault free 
circuit signature bounds and the aliasing rate for the case 
when all errors in the output words are independent. 



2.  PROBLEM STATEMENT AND TESTING 
METHOD 

A multi-channel measurement system (MS) is 
represented in Figure 1 [11]. It consists of r channels 
(ADCs), Ch1,...,Chr, a microcontroller unit, MCU, and 
waveform generators, WG1,...,WGr. The inputs of the MS are 
fed either by signals being measured, x1,...,xr, or test 
(reference) stimuli, x1

0,...,xr
0, through the multiplexors. 

 

 

Fig. 1.  A multi-channel measurement system. 

The transfer characteristic of the ideal (and fault-free) 
ADC, whose full scale range, FSR = 8V, is shown in Figure 
2 [11]. For a real fault-free ADC, the transitions between 
steps may fluctuate within the permissible tolerance bounds, 
k - 1 < T(k) < k, where T(k) is the k-th transition voltage, k = 
1,…,2n - 1; and n is the resolution of the ADC (the number 
of bits in the output code). These bounds are shown by 
dotted lines surrounding the ideal transitions. If we could 
apply a very precise voltage, e.g. 4V, to the input of the 
ADC, the output code would be 1002. However, the voltage 
that normally comes from the on-chip waveform generator 
is not accurate. The problem is aggravated with the 
continued growth of the resolution of modern ADCs, 
 

 

Fig. 2.  The transfer characteristic of the ideal 3-bit ADC with 
FSR=8V. 

resulting in the contraction of the quantization bin. Hence, 
the real test voltage (stimuli) becomes an interval value. 
Note that the rightmost permissible value for the transition 
T(k) and the leftmost permissible value for the transition T(k 
+ 1) (e.g. points a and d in Figure 2, k = 4) lie in the 
infinitesimal neighborhood of the middle point of the 
corresponding quantization bin. If an interval voltage that 
covers the middle point is applied to the ADC, it will also 
produce an interval code, even though no faults are present. 
For the 4V input voltage, the permissible output codes will 
be 011, 100, and 101. This uncertainty complicates the use 
of algebraic compaction for ADCs testing. 

Using the same approach, we can observe that the 
voltage, Uin, belonging to the interval |Uin – 3.5| < 0.5, and 
applied to the same ADC, will produce only two permissible 
codes: 011 and 100. However, as we will see further, if the 
inputs of the ADC under test are fed by the stimuli that 
match the ideal transition voltages, the aliasing rate will not 
change notably. 

It can also be noticed that refining the accuracy of the 
input voltage beyond 0.5 LSB does not reduce the output 
uncertainty and, therefore, is not required. This relaxes the 
accuracy requirements for waveform generators. 

Failure in the analog part of the ADC may change 
positions of the transition points beyond the permissible 
bounds, influencing the widths of the quantization bins. 
When two consecutive transition edges move toward each 
other the width becomes zero. If this happens for a few 
adjacent quantization bins, there will be a sudden (exceeding 
unity) change in the output code. Similar behavior would be 
observed, if failures had occurred in the digital part. 
Irrespective of the nature of failure, we will select the 
following criterion to test the operability of an ADC. If the 
output code of an ADC fed by a test voltage exceeds the 
expected (permissible) tolerance bounds which were defined 
above, the ADC will be assumed faulty. 

We will only consider testing of a single channel, as the 
other channels are tested similarly. Therefore, the channel 
index will be dropped. Let m be the number of distinct 
values of the signal xo which are sufficient to detect all faults 
that may occur in the channel in question. And let xi

0 be the 
value of xo at time ti. Then, the actual output code 
corresponding to the input value xi

0 will be yi = [xi
0+0.5q] + 

δi = yi
0+δi, i = 1,…,m. Here q is the width of the 

quantization bin (equal to 1V in Figure 1); [a] represents the 
integer part of a; yo is the ideal output code; and δi is the 
actual static error. 

We will denote the permissible upper and lower 
tolerance bounds as iδ

  and iδ
 , i = 1,…,m. For a fault-free 

ADC the following inequalities are satisfied: ii δδδ


≤≤ , i = 
1,…,m. From the standpoint of practical realization, it is 
more convenient to verify the equivalent conditions, 

ii yyy  ≤≤ , where iii yy δ
 += 0 , iii yy δ

 += 0 . 
Similar to the principle used in a multiple-input signature 

analyzer, we will compress all output codes of the ADC into 
one signature. But in contrast to the algebraic addition with 
respect to a characteristic polynomial, we will perform 
arithmetic addition modulo L = 2n, where n is the resolution 
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of the ADC being tested. After adding up all the codes, the 
final sum will be: 
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we will obtain ∆=− 0YY . Here 0Y can be calculated 
based on the ideal transfer characteristic of the ADC. It has 
the same value regardless of the actual (faulty or fault-free) 
state of the ADC. 

Since we consider symmetrical ADCs, then 
δδδδ


== ii ,  for every i = 1,…,m. Taking this into account 
and introducing the following bounds: 
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it can be shown that the ADC will  certainly be faulty, if the 
following condition holds:  

 δδ


mLLYYm −<−< mod)( 0  (1) 

Otherwise, we will assume that the ADC is fault-free. 
Here the residue LYYR mod)( 0−=  is the actual signature. 
Therefore, the fault free circuit signature must belong to one 
of the intervals: ],0[ ∆

 , or ]1,[ −∆ L
 . 

Computation of the residue R is performed in the adder 
that is preliminary loaded with the seed value, namely the 
two’s complement of 0Y . The two’s compliment is defined 
as LYY mod00 −= . Equation (1) will then have the form: 

 δδ


mLLYYm −<+< mod)( 0  (2) 

 Example 1 The offset of the fault-free ADC is 0. Let 
us consider the 8-bit ADC, whose offset has become +2 
(FSR/256) due to a failure. The ADC is fed by the five test 
stimuli, x1

0 = 201/256 FSR, x2
0 = 202/256 FSR, x3

0 = 
203/256 FSR, x4

0 = 204/256 FSR, x5
0 = 205/256 FSR. Let 

the actual readings of the ADC be accordingly: y1
0 = 203, y2

0 
= 203, y3

0 = 205, y4
0 = 207, y5

0 = 206. Here m=5, n=8, 
1== δδ

 , Y =1024; Yo=1015; 0Y =9, ∆


=5, ∆


=251. And 

condition (2), 5 < (1024 + 9) mod 256 < 251, is satisfied. 
Therefore, the failure is detected. If the offset were 0, then Y 
would have been 1014. And condition (2) would not hold: 
5 < 255 > 251! 

3.  ALIASING 

Aliasing occurs when the signature of a faulty circuit 
matches the signature of the fault-free circuit. The aliasing 
rate for an ADC can be estimated as the ratio of the number 
of all undetectable errors in the output response of the ADC 
to the number of all possible errors in that response. 

Let us first estimate the aliasing rate for the ideal ADC. 
The output response stream consists of m × n bits that are 
going to be compacted into n bits. It can be shown that 
under these conditions the aliasing rate will be PADC/idl = 
(2(m-1)n - 1) / (2mn - 1). In most practical cases, PADC/idl ≈2-n. If 

the ADC is replaced by a purely digital circuit, this estimate 
remains true. Therefore, the aliasing rate for the digital 
system being tested by modulo sum method is Pdgt = PADC/idl 
≈2-n. 

It can be shown that for a real ADC, the aliasing rate 
becomes 
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Under certain conditions, we can obtain PADC ≈2-n. 
Example 2 For the ADC considered in Example 1, 

equation (3) yields PADC ≈0.0039. 
For an arbitrary choice of m and n, equations (2) and (3) 

will have the forms: 

 LmLYYm modmod)( 0 −<+<  (4) 
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If the input of an ADC is fed by the stimuli matching the 
ideal transitions of the transfer characteristic, then 
expressions (2) and (3) are simplified to: 

 LmLYY modmod)(0 0 −<+<  (6) 
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And if mn >> (m + n), then PADC ≈2-n. 
Comparing (5) and (7) we can observe that for practical 

values of m and n, the aliasing rates for these two cases are 
almost the same and equal to 2-n. The aliasing rate decreases 
with the growth of the resolution of an ADC. As an 
alternative, the size of the modulo adder can be increased, if 
the resolution can not be raised further. It can also be 
noticed that under these conditions the aliasing rate does not 
change with the further increase of m. This is only accurate, 
if errors in the output stream are equally likely. In real 
ADCs these errors are correlated, therefore the estimates 
given can be considered as a first approximation. 

4.  CONCLUSION 

We considered an output response compaction method 
which can be used for built-in self-test of analog-to-digital 
converters. The method implies feeding the ADC with 
analog test stimuli and evaluating the result of the 
compaction of the output responses, referred to as signature. 
If the signature does not hit a predefined interval, the ADC 
is considered to be faulty. The tolerance bounds for the 
signatures of the fault-free channels are evaluated. It is 
shown that these bounds depend on the input stimuli. The 
aliasing rate is estimated. Two sets of the input stimuli are 
examined. It is demonstrated that under an independent error 
model, the aliasing rate for these two sets is equivalent, and 
it does not change noticeably with the increase of the 
number of input stimuli. However, it does change when the 
resolution of the ADC being tested (or the length of the 
signature) is altered. The aliasing rate is reduced with the 
growth of the resolution. 



In the case of a direct-conversion ADC with an 
intermediate conversion of the measured electrical value 
into time, implementation of the method is fairly simple. 
The binary counter used in such an ADC is utilized as a 
signature compactor. In the testing mode, it is reset not after 
each conversion, but only after a series of conversions for 
the entire sequence of test stimuli. The counter is 
preliminary loaded with the seed value, and after the series 
of conversions it contains the actual signature. 

To further increase sensitivity of a signature to special 
types of errors at the output response of the ADC, we can 
select the compaction modulo in the form of Lp = 2n - 1. The 
compactor will now detect all single errors [12]. 

Practical implementation of the method is facilitated in 
the systems measuring frequency dependant parameters 
(such as impedance). In these systems the test stimuli can be 
obtained by deviation of the frequency of the current that 
feeds the impedance being measured. This will significantly 
lower test hardware overhead, although it may increase the 
correlation rate between failures. 

The technique considered in this work can also be used 
for the compaction of signals at test points of an analog 
circuit by means of a precise (and fault-free) ADC. The only 
difference in the reasoning is that the interval of permissible 
tolerance bounds will now be wider. The bounds will consist 
of two components, one being dependant on the ADC and 
the other being dependant on the analog circuitry that is 
responsible for the analog signal. 
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