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Abstract − This research deals with a weighing system 

used under the conditions in which various movements exist. 
These various movements are heaving motion, rolling 
motion, pitching motion, etc. In this paper, these various 
movements are collectively called as “vibration-like move-
ments”. The term of “vibration-like moving conditions” 
means the conditions in which vibration-like movements 
exist. In the previous paper[1], the weighing system which 
has 3 dummy loadcells is discussed. “Dummy loadcell” is 
the loadcell which observes the vibration-like movements. 
We manufactured the weighing system and made several 
experiments with the weighing system. As a result of those 
experiments, it is confirmed that the proposed method is 
able to weigh under the vibration-like moving conditions 
accurately.  

The purpose of this research is the practical realization 
of the weighing system. In order to put the weighing system 
into practical use, it is needed to reduce the size and weight 
of the weighing system. Accelerometers are substituted for 
the dummy loadcells. Generally, accelerometers are lighter 
and smaller than loadcells. This research verifies the 
effectiveness of the weighing system with “dummy 
accelerometers”.  
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1.  INTRODUCTION 

It is important to measure the mass value of an object 
accurately under the vibration-like moving conditions, from 
the viewpoint of industrial application. Therefore, we 
proposed the weighing method under the vibration-like 
moving conditions[1],[2]. The weighing method considers 
the position of a gravity center of a weighed object and it 
basically requires the loadcells which observe the vibration-
like movements.  

Generally, a loadcell is adopted as a weighing sensor in a 
weighing system. The loadcell vibrates under the vibration-
like moving conditions. Therefore, the loadcell is regarded 
as a vibration system. There are dynamical characteristics 

in a vibration system. For these reasons, the same type 
loadcells are adopted as the “dummy sensors” which 
observe the vibration-like movements in the previous 
research. 

However, the weighing loadcell is not enough to be 
small. In order to reduce the size and weight of the weighing 
system, we consider adopting the different type sensors as 
“dummy sensors”. Therefore, we use the accelerometers as 
the dummy sensors. We manufactured the smaller weighing 
system. Some experiments are performed using this 
weighing system. The performance of the weighing system 
is examined.  

As mentioned above, there are the dynamic character-
istics in a vibration system. The dynamic characteristics of 
the accelerometers differ from those of the weighing 
loadcell. This difference of dynamic characteristics of two 
type sensors has prospects of influencing the undesirable 
effect to measuring accuracy. The purpose of this research is 
to confirm the influence of the dynamic characteristics 
difference to the weighing method.  

 

2.  WEIGHING METHOD USED UNDER THE 
VIBRATION-LIKE MOVING CONDITIONS 

2.1. Weighing method with 4 dummy loadcells 
In this section, the weighing method with 4 dummy 

loadcells is described. Figure 1 shows the weighing system 
with a weighing loadcell and 4 dummy loadcells. However, 
in the weighing system which is discussed, 3 accelerometers 
are installed as the dummy sensors. Figure 2 shows the 
coordinate system in which these sensors are installed. A 
sensor detects the force or acceleration in the direction of z-
axis. δz represents the translational motion in the direction of 
z-axis. θi(t) represent the rotational motion around i-axis(i 
=x, y, z).  

Supposing that the position of a loadcell is located at the 
point p(xp, yp, zp), the following accelerations influence the 
output of the loadcell.  
 

 



 

Fig. 1.  Weighing system  

 
 The tangential accelerations )(),( txty ypxp θθ  

 The centrifugal accelerations )(),( 22 tztz ypxp θθ  

 The translational acceleration )(tzδ  
 
The output signal of the loadcell up(t) is written as  
                 )()( tEmtu T

p BP= .                                    (1) 
where,  
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T δθθθθ ++=B  

(3) 
E and m is the output sensitivity and the mass value of 

the loadcell, respectively, and T expresses transposition.   
gxy(t) is the vertical component to xy plane of the accel-
eration due to gravity g. )(tB  is the estimated value of the 
matrix B and is derived from Eq. (4) . The output 
sensitivities and mass value of all dummy loadcells are 
equal and those are represented as E2 and m2. 
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where,  -1 represents an inverse matrix, 

  
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1
1
1
1

444

333

222

111

ddd

ddd

ddd

ddd

zyx
zyx
zyx
zyx

D ,                                  (5) 

[ ])()()()( 4321 tutututu ddddd =U .                            (6) 

di (xdi, ydi, zdi)  (i = 1, 2, 3, 4) represent the positions of 
GCDL and udi (i = 1, 2, 3, 4) represent the output of the 
dummy loadcells. The term of “GCDL” means the “Gravity 
Center of Dummy Loadcell”. Suppose that the output 
sensitivities and mass value of the dummy loadcells are the 

same. As a result, )(ˆ tB  is derived from the matrix D and the 
output signal of the dummy loadcells. The output signal of 
the weighing loadcell uk(t) is represented Eq. (7) as follows;  

 
CB )()( ttu T

k = ,                                          (7)  

[ ]Tdcba=C .                                         (8)  

 

Fig. 2.  Coordinate system.  
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Here E1 and m1 is the output sensitivity and the mass 
value of the weighing loadcell, respectively. The position of 
GCWL is (xk, yk, zk). Regarding uk(t) and B(t) as an output 
signal and input signals of a linear system, the vector C is 
estimated by means of system identification algorithm [3].   

As shown in Eq. (8), the parameter d of C does not 
depend on the position of GCL. The estimated mass value of 
the weighed object 1m  is obtained from this estimated 
parameter d as in the following equation; 

11 / Edm = .                                                  (9) 

2.2. Weighing method with 3 accelerometers 
 Giving our attention to Eq. (1), the output signal of a 

loadcell up(t) is a linear combination of the four components 
of B(t). The element in row 3 of B(t) is the sum of the 
angular velocities squared ( )()( 22 tt yx θθ + ) and the element 
in row 1 and 2 of  B(t) are angular accelerations ( )(),( tt yx θθ ). 
Therefore, if the following conditions are satisfied, 3 
dummy sensors are enough to estimate the vibration-like 
movement. The conditions are as follows; 

 zdi of 3 sensors are equal to 0.  
 )0(xθ and )0(yθ are estimated from the output of 

the weighing loadcell and 3 dummy sensors.  
Supposing that zdi is equal to 0, the 3rd element of B(t) 

does not influence the output of the accelerometers. 
Therefore, Eq. (10) estimates the following vector B3(t).  
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Here, the elements of B3(t) is the vector which has the 
elements of B(t) except row 3(See Eq. (11)). Ea is an output 
sensitivity of the accelerometers. It is assumed that the 
dummy accelerometers are installed at the points of (xdi, ydi, 
0) ( i = 1, 2, 4), matrix D3 is defined as follows;  
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The vector Ud3(t) represents the output vector of 3 
accelerometers.  

                        
[ ]Tdddd tututut )()()()( 4213 =U                  (12) 

On the other hand, the position of zk changes in each 
mass measurement, because the shape and mass value of 
each weighed object changes. As a result, ( ))()( 22 tt yx θθ +  
influences the output of the weighing loadcell. Therefore, 
estimation of C in Eq. (7) requires derivation of ( )tB̂ .  

Since )(tiθ (i = x, y) are the integral of )(tiθ in continuous 

time, ( ))()( 22 tt yx θθ +  is written as follows; 
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Equation (13) is rewritten as the following equation in 
discrete time; 
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where, T is sampling period and  
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Seeing Eq. (14), the estimation of ( ))()( 22 tt yx θθ +  

requires to compute Θini, Θsum(j), )0(iθ (i = x, y).  
Firstly, since Θi( j) are derived easily from the product of 

)( jiθ  and T. Θsum(j) is calculated from the estimates of Θi(j), 
easily. We consider the estimation of the Θini. Let us set a 

preparation time for estimation of several parameters. 
During this preparation time, a weighed object is not loaded 
on the weighing loadcell. Under such condition, we know 
the mass value of the weighing loadcell and the position of 
GCWL. Therefore, it is possible to regard the weighing 
loadcell as 4th dummy loadcell. (In this case, we should not 
make the zk equal to the zdi, because D in Eq. (5) becomes 
singular. ) 

Regarding the weighing loadcell as 4th dummy sensor, 
all elements of B(0) in Eq. (4) are computed by using the 
output signals of 4 sensors at the starting time. Since Θini is 
equal to the element in row 3 of B(0), we obtain Θini by 
using the estimating algorithm mentioned above. 

Finally, we must compute )0(iθ ,(i = x, y). During the 
preparation time, Eq. (4) is rewritten as follows; 
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As mentioned above, Ao and E are computed by using 

the output signals of the weighing loadcell and 3 accelero-
meters. Therefore, it is possible for system identification 
algorithm to compute the estimate value of F, regarding Ao 
and E as output signal and input signals of a linear system, 
respectively. 

As discussed previously, taking the preparation time for 
estimating )0(),0( yx θθ , we are able to use estimated values 

of )( jiθ  (i = x, y). As a result, all element of vector B(t) are 
estimated with 3 accelerometers and the weighing loadcell. 

 
Fig. 4 Photo of the previous system and the new system.

 
 

Fig. 3 Schematic of weighing system.

Table 1.  Parts of weighing system. 
 

Device Model 
Weighing loadcell UH-56-3   (Yamato Scale Ltd.) 

Accelerometer 3801 (PCB) 
DC Amplifier AL1203 (YOKOGAWA) 

Signal Conditioner 478A05(PCB) 
A/D board 6036E(NI) 

Personal Computer
(CPU) 

ThinkPad R61e(Lenovo) 
(Celeron 540, 1.86 GHz) 



3.  WEIGHING SYSTEM WITH 3 
ACCELEROMETERS 

Figure 3 shows the manufactured weighing system with 
3 accelerometers. The weighing loadcell and accelerometers 
are installed on the square aluminum board. In order to 
confirm the feasibility of the weighing system with 3 
accelerometers, the accelerometers are installed at the 
vertexes of the 213.2 mm square. The small distance of the 
accelerometers makes the estimating accuracy of the accele-
rations worse, as shown in Eq. (10). The size of aluminum 
board is 250×250 mm. After confirming the efficiency of 
the weighing system, the distance between accelerometers is 
decreased and the efficiency of the weighing system is 
verified. 

Figure 4 is the photograph of the previous weighing 
system and new weighing system. The left aluminium board 
is the previous system and the right one is the new system.  

4.  NUMERICAL SIMULATIONS AND 
CONSIDERATION 

In this section, several numerical simulations verify the 
efficiency of the weighing method. Table 2 shows the 
simulation conditions. “g” is gravity acceleration. Figure 5 
shows the simulated results. The solid line shows the result 
of the proposed method and the dashed line shows the result 
which the weighing loadcell output is divided by E g.  

 
Table 2. Simulation conditions 

Position of the weighing 
loadcell (0.05, 0.05, 0.05) m 

Position of the accelerometers 
(0.0, 0.2, 0.0) m 
(0.2, 0.2, 0.0) m 
(0.2, 0.0, 0.0) m 

θx(t) 0.1×sin(2π 0.3t) rad 
)(tzδ  0.3×g×sin(2 π t) m/s2 

Mass value of the loadcell 
(Equivalent mass value) 

0.6 kg 
(0.5 kg) 

Preparation time 0.8 s 
Sampling period 1 ms 

 
Under various conditions, simulations become compa-

rable results. Consequently, the proposed method is feasible 
to weigh under the vibration-like moving conditions. In 
simulations, the time required to weigh is about 0.2 seconds.  

In the case that a measuring system consists of some 
kinds of sensors, it is known that the dynamic character-
istics difference between the sensors influence the meas-
uring result[4]. 

Supposing that difference of two sensors’ dynamic 
characteristics exist, some weighing simulations were 
carried out. The difference of the dynamic characteristics 
G(s) is represented as Eq. (19). That is to say, the following 
filter processes the output of accelerometers udi(t). 
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By using bilinear transform, G(s) is translated to G(z) as 
follows: 
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where, T is sampling period. In the case that ‘τ’ is 0.01, 
simulated result is shown in Fig. 6. The simulated result 
shows that the dynamic difference of two sensors is 
considered carefully in this weighing system.  

5.  EXPERIMENTS AND CONSIDERATION 

5.1. Experimental procedure 
In this section, the experimental procedure is explained 

in detail.  
1. The data acquisition starts. About 1 second later, the 

weight is loaded on the tray of the weighing loadcell. 
The data is acquired for 3.5 seconds. 

2. The preparation time is set to 0.8 seconds. During this 
preparation time, )( jxθ and )( jyθ are estimated by 
processing the output signals of the loadcell and 3 
accelerometers.  

3. Between 0.8 and 1.5 seconds, the weighing calculation 
is not conducted, because the influence of loading the 
object remains. During this time period, the estimation 
of the angular velocities )( jxθ and )( jyθ  is continued.  

4. After 1.5 seconds elapsed from the start of the data 
acquisition, the calculation of the mass value starts.  At 
the starting moment of this weighing calculation,  
angular velocities )( jxθ  and )( jyθ  are substituted for 

the initial angular velocities )0(xθ  and )0(yθ , respecti-
vely 
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       Fig. 5 Simulated Results. 
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       Fig. 6 Simulated Result. 



5.2. Experimental conditions  
The equivalent mass of the loadcell is about 0.358 kg. In 

the experiments, the sampling period T is 1 ms and the 
resolution of A/D conversion is 16 bits. Table 3 shows the 
position of the loadcell and accelerometers.  

 
Table. 3 Position of the loadcell and accelerometers 

 

5.3. Exploratory experiment 
Figure 7 shows the output signal of the loadcell in the 

case of following the procedure mentioned above. After 1.0 
seconds elapsed from the start of the data acquisition, the 
weight of 0.1 kg is loaded on the loadcell. The weighing 
system in static condition. 

 

  

6.  CONCLUSIONS 

This research deals with the dynamical mass measure-
ment. From the viewpoint of the practical use, it is intended 
to reduce the size and weight of the weighing system. 
Therefore, the accelerometers are used as the dummy 
sensors. Currently, the difference of the dynamic char-
acteristics is verified. The efficiency of this weighing system 
is discussed in detail, in conference.  
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       Fig. 7 Output signal of the loadcell. 
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