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Abstract − Uncertainty estimation results are presented for
the intercept and slope of the deformation coefficient of a
piston-cylinder set of a Budenberg pressure balance
operating in the range of 16100 psi (111 MPa) by using the
GUM approach and Monte Carlo simulation methods. A
study of the influence of the correlation between quantities
that define the deformation coefficient on the value of its
uncertainty is shown. Monte Carlo simulations are done by
using the commercial software Crystal Ball®.
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1.  INTRODUCTION

The Guide to the Expression of Uncertainty in
Measurement (GUM) [1] is an orientation document
published by ISO (International Organization for
Standardization) that attempts to harmonize the procedures
for measurement uncertainty estimation. Since its
publication, this document has been continually used as a
general guide by several metrology institutes around the
world. However, the measurement uncertainty estimation
approach by using the law of propagation of uncertainties
used in the GUM has some limitations, being valid only in
some situations. This approach is valid only if the following
assumptions are considered: (a) The model used for the
measurand calculation should have linear behavior. When
the model presents non linear behavior, the approximation
made by the GUM approach that truncates the Taylor series
expanded model in the first term is not sufficient anymore to
estimate the measurand uncertainty. (b) All the probability
distribution functions (PDFs) of the source quantities should
be considered symmetrical, which is not applicable in some
cases of the electrical, optics and acoustics metrology. (c)
The Central Limit Theorem validity is admitted, that states
that the PDF resulted from the convolution of a large
number of PDFs has a normal behavior, that is, the PDF for
the measurand is assumed to have a normal behavior, which
is not the case in all situations. (d) After obtaining the
standard uncertainty by the law of propagation of
uncertainties, the GUM approach uses the Welch-

Satterthwaite formula to calculate the number of effective
degrees of freedom, which is used to estimate an expanded
uncertainty. This procedure approximates the measurand
PDF of a t-Student distribution, which is not the case in all
situations.

In order to overcome the limitations of the GUM
approach, propagation of distributions methods have been
applied to metrology. The propagation of distributions is a
generalization of the GUM approach, involving richer
information than that of simple propagation of uncertainties.
Propagation of distributions involves the convolution of the
source PDFs, which can be done in three different ways: a)
analytical integration, b) numerical integration or c)
numerical simulation. The GUM supplement 1 [2] presents
basic procedures on how to use Monte Carlo numerical
simulation methods to propagate distributions in metrology.

In this work, uncertainty estimation results are presented
for the deformation coefficient of a piston-cylinder set of a
Budenberg pressure balance operating in the range of 16100
psi (111 MPa). Uncertainties are estimated by applying the
GUM approach and Monte Carlo simulation methods. A
study of the influence of the correlation between quantities
that define the deformation coefficient on the value of its
uncertainty is shown. Monte Carlo simulations are done by
using the commercial software Crystal Ball® [3].

2.  EXPERIMENTAL

The pressure balance is a pressure measurement
equipment based on the equilibrium between two forces [4].
The first refers to a set of masses that act on the top of the
balance piston under the influence of gravity. The second is
the one that acts on the base of the piston-cylinder set and is
defined by multiplying the pressure exerted by the fluid and
the cross sectional area of the piston-cylinder set.

The equation that defines the pressure measurement in a
pressure balance is (1):
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Where:

mp = mass of the piston (kg);
ρa = specific mass of the air (kg/m³);
ρmp = specific mass of the material of the piston (kg/m³);
Σm = sum of the masses on the top of the piston (kg);
ρm = specific mass of the material of the masses (kg/m³);
gl = local gravity acceleration (m/s²);
σ  = surface tension of the test fluid (N/m);
C = length of the circumference of the piston (m);
A0.20 = cross sectional area of the piston-cylinder (m²);
αc,αp = linear expansion coefficient of the piston-
cylinder set (°C-1);
t = temperature (°C);
λ = deformation coefficient of the piston-cylinder set
(Pa-1);
pn = nominal measurement pressure (Pa);
ρoil = specific mass of the oil (kg/m³);
∆h = difference in height between the piston base and the
point where the pressure is measured.

Calibration of the pressure balance was done using the
cross-floating method, which is based on the equilibrium
between the pressures measured by the test and the
reference. In this way, the calibration can be described by
equation (2):

hg
ptA

Cgm
p loil

npc

l
m

a

REF ∆+
+⋅−⋅++

+⋅





−⋅

=
∑

ρ
λαα

σ
ρ
ρ

)1()]20()(1[

1

20.0

         (2)

Where:
pREF = reference pressure (Pa);
Σm = sum of the masses on the top of the tested piston
(kg);
ρa = specific mass of the air (kg/m³);
ρm = specific mass of the material of the masses (kg/m³);
gl = local gravity acceleration (m/s²);
σ  = surface tension of the test fluid (N/m);
C = length of the circumference of the tested piston (m);
A0.20 = cross sectional area of the tested piston-cylinder
set (m²);
αc,αp = linear expansion coefficient of the tested piston-
cylinder set (°C-1);
t = temperature (°C);
λ = deformation coefficient of the tested piston-cylinder
set (Pa-1);
pn = nominal measurement pressure (Pa);
ρoil = specific mass of the oil (kg/m³);
∆h = the height difference between the reference and test

piston floating level (m). This can be positive or negative if
the reference is above or under the test, respectively.

All variables are known in this equation (2), except for
the effective area (Ae) of the test, which is calculated by

equation (3) for each point of nominal equilibrium pressure
defined as being 10% of the scale range of the instrument to
be calibrated.

)1(20.0 ne pAA λ+⋅=                                                           (3)

Operating (3) gives (3a):

nne bpapAAA +=+= λ20.020.0                                   (3a)

Where a and b are respectively the intercept and the
slope of a linear regression line. In this way, the deformation
coefficient (λ) of the piston-cylinder set can be determined
by equation (4):

 
a
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In this work, the pressure balance was calibrated in
eleven nominal pressure points. According to the GUM [1],
the uncertainties due to the intercept and slope, as well as
their correlation coefficient are estimated by equations (5),
(6) and (7), respectively.
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Where nt is the total number of points of aquired, s2 is
the variance obtained in equation (8) and D the matrix
determinant obtained in equation (9):
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The value of ∆ in (8) is the line deviation that defines the
variation of the effective cross sectional area of the piston-
cylinder set of a pressure balance as a function of the
nominal pressure of calibration. In this way, according to the
GUM, the uncertainty components due to the slope and
intercept define the uncertainty of the deformation
coefficient of the piston-cylinder set as (10):
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Where the sensitivity coefficients are:
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3.  RESULTS AND DISCUSSION

Table 1 shows the results of effective area as a function
of the nominal pressure.

Table 1 – Effective area results as a function of the nominal
pressure.

pn Ae

(psi) (m²)
1100 4.031449E-06
1800 4.031840E-06
3400 4.032034E-06
5000 4.032169E-06
6600 4.032346E-06
8200 4.032484E-06
9800 4.032661E-06

11400 4.032844E-06
13000 4.033068E-06
14600 4.033101E-06
16100 4.033248E-06

Plotting the data from Table 1 values for the slope and
intercept of the adjusted line could be obtained. Values for
s²a, ua, s²b, ub, ra,b, the line regression coefficient and the
deformation coefficient of the piston-cylinder set were also
calculated and are shown in Table 2.

Table 2 – Values for the slope, intercept, regression coefficient, s²a,
ua, s²b, ub, ra,b, and the deformation coefficient of the piston-

cylinder set.

Parameter Value Unit

Intercept (a) 4.03157E-06 m²

Slope (b) 1.09189E-13 m²/psi

Regression coefficient (r²) 0.98 ------

s2
a 3.71264E-21 m4

s2
b 4.00705E-29 m4/psi2

ua 6.09314E-11 m²

ub 6.33012E-15 m²/psi

Correlation coefficient (ra,b) -0.86 -----

Deformation coefficient (λ) 2.7E-08 psi-1

ucλ 1.57E-09 psi-1

Fig.1 shows the results of the uncertainty budget of the
deformation coefficient of the piston-cylinder set by using
the GUM approach, as well as the its combined uncertainty
ucλ.

Fig. 1 – Uncertainty budget of the deformation coefficient of the
piston-cylinder set by using the GUM approach.

Table 3 shows the uncertainty budget of the deformation
coefficient assuming different values for ra,b, from -0.86
(experimental value) to -1.0 (simulated value).

Table 3 – Uncertainty budget results of the deformation coefficient
of the piston-cylinder set by using the GUM approach.

ra,b
Source

-0.86 -1.0

uλ (a) 99.96% 99.95%
uλ (b) 0.00% 0.00%

ra,b 0.04% 0.05%
ucλ 100.00% 100.00%

Table 4 shows the values of the superior and inferior
limits of the expanded uncertainties (95% confidence
interval) of the deformation coefficient of the piston-
cylinder estimated by the GUM approach and by the Monte
Carlo simulation using 100000 runs. Different values for the
intensity of the correlation between the parameters that
define the relationship between the effective area of the
piston-cylinder set and the nominal calibration pressure area
assumed.

Table 4 – Superior (dsup) and inferior (dinf) limits of 95%
confidence intervals of the expanded uncertainties estimated by the

GUM approach and the Monte Carlo simulation (MCS).

ra,b Limits GUM MCS
dinf 2.353E-08 2.394E-08

-0.86
dsup 3.064E-08 3.010E-08
dinf 2.407E-08 2.407E-08

-1.00
dsup 3.064E-08 3.021E-08
dinf 2.402E-08 2.402E-08

0.86
dsup 3.063E-08 3.019E-08
dinf 2.404E-08 2.404E-08

1.00
dsup 3.063E-08 3.016E-08

According to the criteria of equivalence between
coverage intervals used in the GUM supplement 1 [2]
(GUM validation by the Monte Carlo method) one can



admit a value for the expanded uncertainty with two
significant numbers, writing it in the form c x 10l, where c
and l are integers. In the case of this work, the expanded
uncertainty obtained from the standard uncertainty of Table
2, can be written as 31 x 10-10 psi-1. In this way, the
numerical tolerance (defined as δ = 0.5 x 10l) in this case is
δ = 0.5 x 10-10. According to the GUM supplement 1, the
coverage intervals of different distributions are considered
to be equivalent if the differences between their superior and
inferior limits are lower than the numerical tolerance
associated with the standard uncertainty (δ).

Figs. 2 and 3 show that all differences between the limits
of the intervals obtained by the two methods are higher than
the numerical tolerance (δ), indicated as a line.

Fig. 2 – Differences between the limits of the coverage intervals
with the numerical tolerance (δ) considering a positive correlation

coefficient.

Fig. 3 – Differences between the limits of the coverage intervals
with the numerical tolerance (δ) considering a negative correlation

coefficient.

4.  CONCLUSIONS

The uncertainty component that was more relevant to the
overall uncertainty estimation of the deformation coefficient
of the piston-cylinder set was due to the intercept parameter,
associated with the relationship between the effective area
and the nominal calibration pressure, even for higher
correlations, the impact to the uncertainty value is minimal.

According to the criteria of equivalence between
coverage intervals used in the GUM supplement 1 [2]
(GUM validation by the Monte Carlo method) one can
conclude that the coverage intervals of the distributions
obtained for both estimation methods (GUM approach and
Monte Carlo simulation) were not equivalents.

The Monte Carlo simulation method showed to be the
more appropriate method for the uncertainty estimation of
the deformation coefficient of the piston-cylinder set of a
pressure balance.
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