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Abstract − A Bayesian analysis of a calibration model 

was presented in Metrologia, 43 (2006) S167-S177, wherein 

two approaches were considered to obtain the probability 

density function associated with the measurand. In one of 

them, Bayes' theorem was applied directly to an input 

quantity for which measurement data were available. In the 

other approach, that same input quantity was expressed in 

terms of the measurand and the other input quantities. Since 

the forms of the likelihood function used in each approach 

were not the same, different prior functions were needed. In 

this paper we show that both approaches produce the same 

final results if the prior function to be used in the second 

approach is derived from that applicable to the first 

approach. By following this procedure, both prior functions 

are assured to encode the same initial information. 
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1. I�TRODUCTIO� 

At the time the GUM [1] appeared, there was some 

debate among metrologists about the merits and drawbacks 

of conventional and Bayesian statistics to evaluate 

measurement data. Since no agreement was reached, both 

viewpoints were mixed in that document, making it 

somewhat confusing for theoreticians and practitioners alike 

[2]. Currently, the conflict seems to have been resolved in 

favor of the Bayesian treatment. The recent publication of 

the Supplement 1 to the GUM [3], which is entirely based 

on Bayesian ideas, supports this assertion.  

Yet, it appears that some misunderstanding about 

fundamental Bayesian concepts still prevails. In this paper 

we address the apparent paradox raised in [4], where it was 

stated that two approaches for doing a Bayesian analysis are 

possible. These approaches were designated as 

(i) Bayesian analysis applied to the type A input 

quantities only; 

(ii) Bayesian analysis treating all unknown quantities as 
statistical parameters. 

When applied to a simple calibration model, it was found 

in [4] that the results of both approaches were different. It 

was later suggested [5] and proved [6] that the discrepancy 

was to be attributed to the use of different prior functions in 

the two approaches. In the present article we show that if 

both priors encode the same initial state of knowledge, the 

two approaches are reconciled. 

2. A�ALYSIS 

Consider a measurand Y  modeled as 
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and assume that the three input quantities X , 0B  and 1B  

are independent from each other. X  is a quantity that is 

repeatedly measured during calibration yielding independent 

data { }1, , , 2X nD x x n= ≥… , while 0B  and 1B  are 

characterized by known probability density functions 

(PDFs) 
0 0( )Bg β  and 

1 1( )Bg β .
1
 It is assumed that no prior 

knowledge about the measurand is available. 

2.1. Approach (i) 

In approach (i) Bayes' theorem is applied to the quantity 

X , giving 

 , ,( , ) ( , ; ) ( , ),X X X Xg D l D gξ ξ ξ∝P Pπ π π  (2) 

where P  designates the set of parameters that may appear 

in the sampling distribution from which the likelihood 

function ( , ; )Xl Dξ π  is constructed. The function 

, ( , )X Xg DξP π  is the joint PDF of the quantity X  and 

parameters P  after the data are obtained; the prior function 

, ( , )Xg ξP π  encodes whatever information is available about 

X and P before the data are gathered. 

It is frequently appropriate to assume that the data XD  

are explained by the action of a Gaussian random 

mechanism with standard deviation S . In this case, the 

likelihood becomes 

                                                           
1
 The notation in [3] is followed here: the subscripted letter 

g  denotes PDFs (either joint or marginal) or prior 

functions, and lower case Greek letters denote the possible 

values of the corresponding upper case Roman letters that 

designate quantities. All PDFs and prior functions should be 

regarded as encoding states of knowledge, not as sampling 

distributions. 
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or equivalently, since /= Σ ix x n  and 

2 2( ) /( 1)= Σ − −is x x n  are sufficient statistics, 
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In the absence of prior information about one or more 

quantities or parameters, it is today widely accepted that 

reference prior functions should be adopted for them [7,8]. 

In the present circumstances, if nothing is previously known 

about X  and S , the reference prior becomes the improper 

noninformative function [9] 
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By inserting this prior and the likelihood (4) into (2), and 

integrating out the standard deviation, the posterior PDF 

( )ξX Xg D  is found to be a scaled t-distribution with 1−n  

degrees of freedom centered at x  [10]. 

The next step is to express the joint PDF about the input 

quantities after taking into account the data but before using 

the measurement model. Since the input quantities are 

independent, this PDF is given by 

 
0 1 0 1, , 0 1 0 1( , , ) ( ) ( ) ( ).ξ β β ξ β β=X B B X X X B Bg D g D g g  (6) 

It is now possible to introduce the measurand Y  instead 

of one input quantity that may be chosen arbitrarily. This is 

done by expressing the latter in terms of the measurand and 

the other input quantities with the help of the model (1). For 

example, solving for X  gives 

 0 1 .ξ β β η= +  (7) 

The well-known transformation rules of probability calculus 

[11] then yield 

 

0 1

0 1

, , 0 1

0 1 0 1

( , , )

( ) ( ) ( ) .

η β β

ξ
β β η β β

η

=

∂
+

∂

Y B B X

X X B B

g D

g D g g
 (8) 

The last step is to marginalize the PDF (8) by integrating 

out all remaining input quantities. In this way we get 
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Using the same reasoning, the following two equivalent 

expressions are obtained 

 

1 0

( )

1 1 1 1

( )

( ) ( ) ( ) d d

η

β β ξ ξ β η ξ β

=

−∫ ∫

i
XY

B X X B

g D

g g D g
 (10) 

and 
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Fig. 1 depicts the PDF 
( )
( )ηi

XYg D  (solid curve) for the 

data XD  used in [4] ( 5=n , 100,521=x , 1,50227=s ). 

The PDFs 
0 0( )Bg β  and 

1 1( )Bg β  were taken as Gaussian 

distributions with expectations 0 0=b  and 1 1=b , and with 

standard uncertainties 
0

0, 25=Bu  and 
1

0,20.Bu =  The 

expectation of 
( )
( )ηi

XYg D  is ( ) 105,1=iy  and its standard 

uncertainty is 
( )

24,5=i
Yu . Arbitrary but consistent units are 

implied. 

 

 

Fig. 1. Posterior PDFs for the measurand obtained with approach 

(i) (solid curve) and (ii) (dashed curve) for the data given in the 

text. 

2.2. Approach (ii) 

In approach (ii) Bayes' theorem is also applied to the 

quantity X , but expressed in terms of the measurand and 

the other input quantities through (7). This procedure gives 
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where 
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and 

 
0 1 0 1, , , 0 1 0 1 ,( , , , ) ( ) ( ) ( , ).η β β σ β β η σ∝Y B B S B B Y Sg g g g (14) 

This second approach needs the function , ( , ).Y Sg η σ  

Since there is neither prior knowledge about Y  nor about 

S , one might be tempted to assume, by analogy with (5), 

that the adequate noninformative prior would be 
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By inserting this prior into (14) and the result, together with 

the likelihood (13), into (12), and by integrating over σ , 

we get 
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where 0 1( )β β η+ Xt D  is equal to the distribution 

0 1( )β β η+X Xg D  above, namely, a scaled t-distribution 

with 1−n  degrees of freedom centered at x . 

Finally, marginalization of (16) yields 
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where k  is a normalization constant to be found 

numerically. 

Fig. 1 depicts the PDF 
( )

( )ηii
XYg D  (dashed curve) for 

the same data and PDFs 
0 0( )Bg β  and 

1 1( )Bg β  as before. 

The expectation is ( ) 110,8=iiy  and the standard 

uncertainty is 
( )

28,6=ii
Yu . These results are manifestly 

different from those obtained with approach (i). 

3. DISCUSSIO� 

Both approaches follow from a straightforward 

application of Bayes' theorem and of the rules of probability 

calculus. The PDFs 
( )
( )ηi

XYg D  and 
( )

( )ηii
XYg D  express 

the state of knowledge about the output quantity after taking 

into account the measurement model, the measurement data 

and all relevant prior information. So why are they 

different? 

The culprit is clearly the prior function (15), because it 

does not encode the absence of prior information as 

intended. To see this, let us transform the prior 

0 1, , , 0 1( , , , )ξ β β σX B B Sg  from X  to Y , as in (8). The result 

is 
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Inserting the partial derivative 1/ξ η β∂ ∂ =  and the 

noninformative prior , ( , ) 1/ξ σ σ∝X Sg  produces 
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which, in combination with the likelihood (13) followed by 

integration over σ  and marginalization yields 
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where the superscript m stands for “modified”. The PDF 

(20) is exactly equal to (9). 

4. CO�CLUSIO� 

The simple (nonlinear) calibration model (1) was 

analyzed in [4] using two Bayesian approaches, yielding 

different results. It was shown that the discrepancy between 

those approaches is due to a differing choice of the prior 

functions: (5) in approach (i) and (15) in approach (ii). The 

prior (15) appears to be a noninformative, but it is not. To 

adequately reflect the available information, the prior to be 

used in approach (ii) is obtained by transforming the prior 

0 1, , , 0 1( , , , )ξ β β σX B B Sg  in (14) from X  to Y , yielding (19). 

In this way the two approaches are reconciled. 
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