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Abstract − Modern uncertainty evaluation is based on 

both the knowledge about the measuring process and the 
input quantities contributing to the measurement result [1-
2]. Very often, two or more of the input quantities are not 
independent from each other. The combined uncertainty can 
be enhanced or decreased by such correlation. In everyday 
practice, however, correlation is often ignored since the 
relevant uncertainty documents do not provide ready-for-use 
procedures for proper treatment of correlation. The paper 
provides practical techniques for identifying and quantifying 
correlation in measurements. Starting from a systematic 
modelling procedure [3-4], a concept is presented that 
allows to easily include correlation in the measurement 
model and to properly estimate correlation coefficients or 
correlated fractions of the related input quantities either 
from existing (statistical) data or from other (non-statistical, 
logical) knowledge [5-6]. Three possible ways to take 
correlation into consideration when evaluating measurement 
uncertainty are described and discussed. 
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1.  INTRODUCTION 

The Bayesian concept underlying the GUM framework 
[1-2] is based on both the knowledge about the measuring 
process and the input quantities contributing to the 
combined uncertainty. Very often, two ore more of the input 
quantities are not independent from each other. Depending 
on the kind of influence of the correlated quantities, and on 
the measurement method employed, correlation can result in 
an increase or decrease of uncertainty: The combined 
uncertainty for the sum or the product of correlated 
quantities is enhanced and that for the difference or ratio is 
decreased, sometimes considerably [5-6]. 

Since there is a deplorable lack of comprehensible 
guidance on consistent and practicable treatment of 
correlation, in everyday practice, it is often simply ignored. 

For practitioners, it is important to know in which cases 
correlation might be expected and where it does come from. 
Input quantities are often correlated because the same 
physical measurement standard, measuring instrument, 
reference datum, or even measurement method having a 
significant uncertainty are used for estimating their values 

[1]. Correlation can also exist if different standards are used 
which have been calibrated in the same experiment or even 
in the same laboratory. Furthermore, correlation can be 
expected if, with respect to the measuring procedure, signifi-
cant systematic errors (including subjective ones) are to be 
considered. 

On the other hand, for example, in case of doing 
difference measurement, correlation can be a highly desired 
effect, such as, in comparing weights, electrical resistances 
etc. by means of comparators [5-6]. In these cases, 
correlation results in a decrease of uncertainty. 

The paper provides practical techniques for identifying 
and quantifying correlation in measurements. A concept is 
presented that allows to easily include correlation in the 
measurement model and to properly estimate correlation 
coefficients or correlated fractions of the related input 
quantities either from existing (statistical) data or from other 
(non-statistical, logical) knowledge [5-6]. 

In measurement practice, it is clearly to be distinguished 
between „logical“ (non-statistical) and statistical correlation. 
The last-mentioned kind of knowledge appears in situations 
quantities are repeatedly measured. Generally, correlation is 
caused by a dependence of two or more quantities on one or 
more common („third“) quantities. The paper describes three 
possible ways to take correlation into consideration when 
evaluating the measurement uncertainty: Resolving 
correlation by introducing known dependencies on another 
(third) quantity, the „classical way“ of Gaussian uncertainty 
propagation and introducing so-called auxiliary quantities 
representing the „correlated fraction“ of two or more 
quantities. 

2.  CONSIDERATION OF CORRELATED 
QUANTITIES 

For the standard GUM procedure see [1], for the concept 
of modelling see [3-4]. 

2.1. Expectation, variance and covariance 

The expectation value of an input quantity iX  is the best 
estimate of the value of that input quantity, 
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and its standard deviation is the uncertainty xiu  associated 
with this estimate, 
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The covariance of two (random) variables iX  and jX  is a 
measure of their mutual dependence [1]. It is defined by 
 

[ ] ( )( )[ ]Cov , Ei j i i j j xixjX X X x X x u= − − = .    (3) 
 

The covariance can also be expressed by the product of 
individual variances xiu  and xju  and the correlation 
coefficient 

ijr : xixj xi xj iju u u r= ⋅ ⋅ .     (4) 
  
The correlation coefficient characterizes the strength of 

interdependence of the quantities iX  and jX . Its value is 
zero if these quantities are completely independent of each 
other and it tends to be (± ) unity if there is an unambiguous 
functional relationship between them. A detailed 
interpretation of the meaning of the correlation coefficient 
with the example of a linear regression of two quantities iX  

and jX from observed data is given in [6]. 

2.2. Correlated quantities in modelling 
When carrying out modelling, it is an indispensable 

prerequisite that the input quantities being correlated really 
appear in the cause-and-effect relationship and in the model 
equation respectively [3-4]. 

If, for example, a standard weight Ws is established by 
two individual (patched) weight pieces SRC1 and SRC2, 
this is clearly to be represented in the cause-effect 
relationship (see Fig. 1). In case of this example shown in 
Fig. 1, due to their calibration within the same experiment 
and the same laboratory respectively, the (unknown) errors 
of the patched standards used, S1 2SW and Wδ δ , and, thus, 
their weighing values WS1 and WS2 can be assumed to be 
correlated quantities. This correlation might be caused by 
using the same standard (of higher order) and the same 
weighing apparatus for their calibration.  

 
Fig. 1. Example: Depiction of using „patched“ standards for the 
calibration of a scale, (a) illustration, (b) cut-out of the respective 
cause-effect relationship. Symbols see text 

 
Therefore, the mathematical cause-effect relationship for 

the patched standard must always read 

S S01 S02 S1 S2W W W W Wδ δ= + − −  ,                         (5) 
 
where WS01 and WS02 are the nominal weighing values of the 
weights and S1 2SW and Wδ δ are the respective errors.   

Another example, taken from the GUM [1], is given with 
Fig. 2: The partial resistance of a resistance decade that are 
considered to be correlated are to be treated as separate 
elements 1 10, ...,R R  to be associated with individual 
expectations and uncertainties. Therefore, the combined 
resistance DECR  in the mathematically expressed cause-and-

effect relationship must be written DEC 1 2 10...R R R R= + + + .   
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Fig. 2. Illustration of the calibration of a resistance decade with a 
standard resistance (see GUM [1] 5.2.2 and F.1.2.3) 

 
Wrongfully, often one uses DEC 110R R= ⋅  that 

corresponds with a correlation coefficient r = 1. The 
example shows that for the inclusion of correlated 
quantities, the same modelling components and the same 
concept for establishing the measuring chain as for 
uncorrelated measurements can be utilized [3-4]. But it is an 
absolutely indispensable prerequisite that the correlated 
quantities do appear in the model equation. 

 

3. ORIGIN OF CORRELATION 

 For practitioners it is important to know where 
correlation might be expected and where it does come from. 
Correlation is present in many measurements and, 
dependent on the model for the evaluation of uncertainty, it 
enhances or decreases the combined uncertainty. 
 
 In practice, input quantities are often correlated because 
the same physical measurement standard, measuring 
instrument, reference datum, or even measurement method 
having a significant uncertainty is used in the estimation of 
their values [1]. This may be comprehensible illustrated with 
the example of the determination of a rectangular area by 



measuring the length and the width by means of the same 
measuring instrument. 
 The above statement applies also if different standards 
are used but these standards have been calibrated in the 
same experiment or even in the same laboratory (see the 
example depicted in Fig. 1). 
 Furthermore, correlation can be expected if, with respect 
to the measuring procedure, significant systematic errors 
(including subjective ones) are to be considered. 
 On the other hand, correlation is a highly desired effect 
in case of doing any difference measurement, such as, for 
example, comparing weights, electrical resistances etc. by 
means of a comparator [6]. In these cases, correlation results 
in a decrease of uncertainty. 
 In measurement practice, is clearly to be distinguished 
between „logical“ (non-statistical) and statistical correlation. 
The latter appears in situations where quantities are 
repeatedly measured (see 4.1) and the former is caused by a 
dependence of two or more quantities on one or more 
common („third“) quantities. 

 
 

4. MATHEMATICAL TREATMENT OF 
CORRELATION 

4.1. Statistical correlation 
Both, statistical and logical correlations are based on 

systematic effects. For mathematical treatment, the so-called 
statistical correlation is the simplest case. It is related to 
repeated measurements (observations); e.g. of the quantities 

iX  and jX . Then, the covariance associated with the 
expectation values can be calculated by  
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where ikq and jkq are the individual observations of the 

quantities iX  and jX  , and 
1
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In accordance with the ISO-GUM procedure [1], 

correlation is to be taken into account by Gaussian 
uncertainty propagation. 

To demonstrate this, we study two simple models: 
 

i jY X X
+
= +  and i jY X X

−
= − .   (8) 

 
Assume, we generate n  samples of possible values 

( ),ik jkq q  and, using standard statistical procedures, 
compute the mean values, the experimental standard 
deviations of the means and the covariance associated with 
the mean values. For the expectation values we obtain 

i jy x x−−
± = ± .                        (9) 

Gaussian uncertainty propagation yields 
  

2 2 2 2y xi xj xixju u u u+ = + +  and 2 2 2 2y xi xj xixju u u u−
− = + −  (10) 

 
respectively. 

4.2. “Logical” (non-statistical) correlation 
“Logical“ correlation is always caused by the 

dependence of two or more quantities on one (or more) 
common (third) quantity. For formal description we 
consider that at least two given quantities i jX and X  may 
be influenced by a set of n  quantities  

T

1( , ..., , ..., )L l mQ Q Q=Q . 
For instance, consider the determination of the area of a 

rectangle rA  by measuring the height H and width W by 
means of the same instrument. The simplest model would be 
given by 

 

rA H W= ⋅ .  (11) 
 

Assume the model functions (of the type (9)) for the 
input quantities H and W are: 

 
( ), ,H H HH f h H M h H Mδ δ= Δ = + + Δ and 

( ), ,W W WW f w W M w W Mδ δ= Δ = + + Δ , (12) 
 
where h and w are the values indicated by the instrument 
used, Hδ and Wδ are quantities that account for various 
(random) effects and imperfections, in particular for the 
finite resolution of the instrument, and MΔ is the quantity 
that accounts for the instrumental error of the instrument 
used and, therefore, for a joint uncertainty contribution of 
the quantities H and W. The model for the measurand rA  
would then be given by: 
 

( )( )r H WA h h M w W Mδ δ= + + Δ + + Δ  . (13) 
 

In this case of „logical“ correlation of type-B evaluated 
quantities, the “statistical” Equations (6) and (7) cannot be 
used to determine the resulting correlation coefficient. 
Nevertheless, the GUM [1] uses the covariance and the 
correlation coefficient for calculating the measurement 
uncertainty. 

The quantities, iX  and jX  that depend on the same set 

of quantities 1, ..., , ...,l mQ Q Q  have the expectations 

[ ]El lq Q= . Therefore, the covariance associated with the 

expectations ix  and jx  can be estimated by [1] 
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where ( )1 , ...,i i mX f Q Q=  and ( )1 , ...,j j mX f Q Q= . 

4.3. Correlation in uncertainty calculation 
Generally, there are three possible ways to take 

correlation into consideration when evaluating the combined 
measurement uncertainty: 
a. If the relationship between the correlated quantities 

can unambiguously be expressed, e.g. in case of 
knowing their functional dependencies on another 
(third) quantity, this relationship should be 
introduced in the model equation. This way will 
result in resolving the correlation. If possible, this 
way is to be preferred. 

b. If the correlation coefficient(s) or the respective 
covariance(s) is/are sufficiently well known, they can 
be taken into account and propagated as 
recommended by the GUM [1], i.e. using the 
Gaussian uncertainty propagation. 

c. Since correlation is always related to systematic 
effects, one can formally introduce an auxiliary 
quantity that „represents“ the correlated fraction of 
the quantity. In some cases, if the physics of the 
measurement is well known, this allows to resolve 
correlation straightforward by modelling explicitly 
the dependence of two or more input quantities on 
the same systematic effect expressed by the auxiliary 
quantity [5-6]. 

 
Way a: 

Starting with the example given above (see 3.2), the 
easiest way to calculate the measurement uncertainty is to 
directly utilize the model equation (13). 

For greater ease in writing, we 
introduce ,h wH H h W W wδ δ δ δ= = , and analogously 

HMΔ  and WMΔ . We know that the quantities H and 
W (see example above) are correlated due to their common 
dependence on the measurement error of the instrument 
used. The model for the area rA  may then be written as 

 
( )1r h H w WA h w H M W Mδ δ= ⋅ + + Δ + + Δ   (15) 

 ( ) ( )( )h w W w Wh w H W M W Mδ δ δ+ ⋅ + Δ + + Δ , 
 
and the best estimate for the value of rA  is its expectation. 

We assume that [ ] [ ] [ ]E E E 0H W Mδ δ= = Δ = . This 
leads to  
 

[ ] [ ]( )E 1 Er r H Wa A hw M M= = + Δ ⋅ Δ  

 [ ]( )2 Ehw u M= + Δ   (16) 
 

The term [ ]( )2 2 EMu u MΔ = Δ  would not appear if one uses 
a linear model. Therefore, this term can usually be 
neglected. Assuming this, the linearized model is obtained: 
 

( )rA h w w H h W M h wδ δ= ⋅ + + + Δ +  . (17) 
 
From this model, one can compute the uncertainty as 
 

( )22 2 2 2 2 2
ar H W Mu w u h u u h wδ δ δ= ⋅ ⋅ + ⋅ +  , (18) 

 
where for the ease in writing the same symbol is used for the 
quantity and for its value. 
 
Way b: 

In practice one is often not given a detailed uncertainty 
budget for the input quantity but only a combined 
uncertainty and an estimated correlation coefficient and the 
correlation coefficient for any two or more measurements is 

1 2l lr . By inspection of the relationships in (11) one may 
infer that 

2 2 2 2 2 2
1 2l H M l W Mu u u u u uδ δΔ Δ= + = = + , and 
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The uncertainty associated with the area could then be 

computed by means of the well-known formula 
 

2 2 2 2 2
2 1 1 2 2 1 2 1 1 22ar l l l l l lu l u l u l u u l r= + + ⋅ ⋅ .  (20) 

 
Because of 1 2l lu u= (see example above) one obtains: 

2 2
1 2 1 2 1 22ar l l lu u l l l l r= ⋅ + + ⋅ ⋅ .  (21) 

 
This is fairly simple and can be used in corresponding 

cases. However, in case of more complex models, this 
simple approach may fail. 
 
Way c:  
The way is to introduce an auxiliary quantity CX  that is 
presumed to cause correlation. For reasons that so will be 
evident, we represent now any quantity X  by 
  
 StdxX x u X= + ⋅                         (22) 
   
where [ ]Ex X=  and [ ] ( )2

Std StdVar E 1X X= =⎡ ⎤⎣ ⎦ [6]. 
Using this form, one can represent the correlated quantities, 
e.g. the diameter D and the height H of a given cylinder, as a 
sum or difference of an uncorrelated and an auxiliary 
quantity that accounts for correlation: 
 

du u,Std c c,StdxD d u D u X= + ⋅ + ⋅ , and                              (23) 



 

h,u u,Std c c,StdxH h u H u X= + ⋅ ⊕ ⋅                          (24) 
 
where ⊕  is to be derived separately [6]. This representation 
must yield the correct uncertainties. Therefore, we 
additionally request that 
 

2 2 2
u c ,d d xu u u= −  and  2 2 2

u ch h xu u u= − .                          (25) 
 
     Furthermore, this representation must yield the correct 
covariance or correlation coefficient. Therefore, 
 

[ ] 2
, cCov , d h d hD H u u r u= ⋅ ⋅ = +                        (26) 

⇒ ( )2
c ,x d d h hu u r u= ⊕ ⋅ . 

 
    For greater ease in writing we use a simple substitution: 

sin rα = . The models function for the volume of the 

cylinder Vcyl. is now given by: 
 

 
( )

( )

2

cyl u,Std c,Std

u,Std c,Std

cos sin

cos sin

V d u D u X

h u H u X

π α α

α α

= + +

+ +
 .       (27) 

 
Only a few terms remain when taking the expectation: 
 
      ( )( )( )2 2 2

cyl 2sin 1v d h u h dπ α= + + +  ,                    (28) 

 
and uncertainty respectively: 
 
 
      ( )2 2 2 2 2 4 2 3

cyl 4 2sin .Vu u h d d hdπ α= + +                 (29) 

 
If a linear model is not sufficient, Monte-Carlo 

techniques can be utilized. As an often used alternative to 
the above approach one might also consider the Cholesky 
factorisation of the uncertainty matrix Ux [6].  

5. CONCLUSION 

This paper identifies typical measurement situations in 
which correlation may be of importance. Furthermore, based 
on a modelling procedure, the paper presents three possible 
ways to take correlation into consideration when evaluating 
the measurement uncertainty. Primarily, these are the two 
„classical ways“ resolving the correlation by Gaussian 
uncertainty propagation. The calculation of correlation 
coefficients from statistical data as well as their estimation 
in case of „logical“ correlation of type-B evaluated 
quantities is explained. A third way to take correlation into 
consideration can be done by introducing a so-called 
auxiliary quantity. Important advantages of this method are 
that it does not need any sensitivity coefficients and – in 

connection with Monte-Carlo techniques – it simplifies the 
treatment of complex problems significantly.  

Systematic inclusion of correlation in the modelling and 
uncertainty-evaluating procedure may be considered as an 
important improvement of modern uncertainty evaluation. 
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