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Abstract − One of the key applications in mobile 

network monitoring is to detect anomalous phenomena in 
the network. Distance-based methods are commonly used in 
unsupervised anomaly detection. The results are dependent 
on the distance metrics used and the scaling of the variables. 
In many cases very simple methods can provide sufficient 
performance if the variables have been scaled properly. In 
this paper we discuss the importance of scaling in distance-
based methods and the possibility to incorporate a priori 
knowledge of the relative importance of the variables by 
scaling. We present an example of a priori scaling on 
performance data measured from the radio interface in a 
mobile telecommunication network. The results are 
compared to those obtained by using traditional 
normalization. 

Keywords: anomaly detection, scaling, a priori 
information 

1.  INTRODUCTION 

Detection of anomalies or outliers is an important task in 
many data analysis applications. The amount of data 
collected from industrial applications is ever-increasing and 
it is impossible for the process operators to browse all the 
data manually. Therefore automated methods are required to 
detect the samples or parts of the data that contain 
something that might be of further interest.  

Anomalies are not necessarily always signs of errors or 
malfunctions. They can also reveal new valuable 
information from the system [1]: An apparently wild (or 
otherwise anomalous) observation is a signal that says: 
‘‘Here is something from which we may learn a lesson, 
perhaps of a kind not anticipated beforehand, and perhaps 
more important than the main object of the study”. 

A general definition for an outlier was given by Hawkins 
[2]: An outlier is an observation that deviates so much from 
other observations as to arouse suspicion that it was 
generated by a different mechanism. This definition is very 
extensive but it gives no guidelines how to determine 
whether an observation is an outlier or not.  

Various statistical methods have been used in outlier 
detection [3]. In the usual case in mobile network 

monitoring, as well as in many other industrial applications, 
there are no data with predefined labelled anomalies 
available. Thus supervised methods can not be used to 
detect anomalies. Therefore unsupervised methods have to 
be used. The normal or most common behaviour of the 
system can be modelled from the history data. The states 
that are rare and deviate from the common behaviour can be 
detected as anomalies. Detecting anomalies in single 
variables is simple enough: they are located at the tails of 
the distribution. While nonlinear transformations do change 
the differences between samples, their order in the 
distribution will remain as long as the transformations are 
monotonic. Anomaly detection in multivariate data is more 
sensitive to transforms. Even linear scaling of the variables 
will affect the order in which the anomalies are ranked 
according to their severity.  

Simplicity is usually preferred in industrial applications. 
Complexity of the methods also increases the complexity of 
the application they are used in, therefore increasing the 
requirements for maintenance. In many cases very simple 
distance-based methods in anomaly detection can provide 
sufficient performance provided that the variables have been 
scaled properly.  

Unfortunately the scaling, also referred as weighting, of 
the variables is often neglected and underrated part in 
research. Normalization to zero mean and unit variance is 
accepted as a standard procedure without further 
investigations whether it is the most suitable method for the 
case or not. 

In this paper we discuss the effects of scaling on 
unsupervised distance-based anomaly detection. We present 
a scaling method that is solely based on a priori expert 
knowledge. We demonstrate the method using two radio 
interface performance measurements from a mobile 
telecommunication network. The results are visualized and 
compared to those obtained by normalization which is a 
very common method for scaling. Finally we present an 
example using four variables and demonstrate the effect of 
scaling on the detected anomalies. 



2.  UNSUPERVISED ANOMALY DETECTION 

Unsupervised anomaly detection is a wide field. The 
methods vary from principal components [4] to self 
organizing neural networks [5] and clustering [6, 7]. Local 
features of the data space can also be emphasized [8, 9]. 
Knorr et. al. [10] have defined a distance-based outlier. 
However, also other previously mentioned methods rely on 
distance metrics. In industrial applications it is important 
that the anomalies can be ordered according to how critical 
states the anomalous samples present. That allows the 
operators to react to the most severe situations first. 

2.1. Distance metrics 
Proximity or similarity of two points on the data space is 

determined by the distance between them [11]. 
Distance between two points a and b is a function d(a,b). 

Distance metric has to satisfy three conditions [12] specified 
in Table 1.  

Table 1.  Properties required from distance metric. 

Property Definition 
positivity d(a,b) ≥ 0; d(a,b) = 0 iff a = b 
symmetry d(a,b) = d(b,a) 

triangle inequality d(a,c) + d(c,b) ≥ d(a,b) 
 
The most common metric is Euclidean distance, also 

known as straight line distance. If the points a and b are 
represented by vectors xa and xb then Euclidean distance is 

 T
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A more general metrics that also takes into account the 
covariances of the variables is the Mahalanobis distance 

 T
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where S is the sample covariance matrix. Mahalanobis 
distance is scale invariant in a sense that any linear 
transform x’ = a*x + b, where a and b are scalar constants, 
does not affect the distance metric. However, nonlinear 
transformations do affect it and the relative importance of 
the variables is completely determined by the covariance 
matrix. 

3.  SCALING  

Scaling plays a very important role in all the methods 
related to proximities or distances between samples. This 
applies to clustering [13] as well as anomaly detection [9]. 
Scaling defines what kind of anomalies will be detected [14, 
15]. Proper scaling should make the variables equal in their 
importance within the problem in which they are used. 
Decisions about the relative importance of the variables 
always require process knowledge and experience 
concerning the variables. This makes it more difficult to 
implement applications and to adapt to new processes. 
However, according to our experience utilizing expert 

knowledge will improve the performance of methods in 
practice. 

Scaling by the range (dividing the data with the range it 
covers and typically shifted to the range from 0 to 1) has 
been found to give the best results in clustering [16, 17]. 
That is, however, very sensitive to outliers in the data. In 
many real life applications, especially in telecommunication 
networks with non-normal distributions, more robust and 
possibly nonlinear methods are required, such as logarithm 
transforms and robust standard deviations [9]. In this paper 
we concentrate to traditional normalization and a special 
piece-vice linear scaling that utilizes a priori knowledge of 
the importance of the variables. 

3.1. Normalization 
Normalization, also called z-score or autoscaling, is a 

very common procedure for scaling. Each variable is forced 
to have zero mean and unit variance by subtracting the 
sample mean and then dividing by the sample standard 
deviation (3). 
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Normalization is used very often. It is easy to apply and 
appropriate when the variables have different scales 
originally.  

Figure 1. shows an example of such a case. Scatter plot 
of heights in meters and weights in kilograms of 11 persons 
is presented on original scale. Two interpoint distances are 
also depicted: distance from sample A to B is 2 and the 
distance between A and C is 0.17. It is clear that this is not 
reasonable considering the data set.  

 

Fig. 1.  Scatter plot of heights and weights of 11 persons on 
original scale. 

The same data are presented in Fig 2. Now the variables 
are normalized. The plot looks the same but now the x and y 
axes are normalized units. The distance between A and B is 
now 0.34 and the distance between A and C equals 2.05. 
This seems much more appropriate interpretation of the 
distances regarding the data set at hand. 



 

 

Fig. 2.  Scatter plot of heights and weights of 11 persons on 
normalized scale. 

The relative importance of the variables is determined by 
the variances of the variables. The importance can be 
adjusted by multiplying each normalized variable by a 
weight factor corresponding to its relative importance. 

In the following section a more general method is 
presented, where also nonlinear features can be utilized. 

3.2. A priori scaling of GSM network performance 
measurements 

The following example shows how a priori information 
can be integrated in the analysis by a piecewise linear 
scaling. It allows integration of the end users’ a priori 
knowledge about the behaviour and importance of the 
variables.  

The a priori scaling information is for network 
performance data of a commercial European GSM operator 
[18]. All the KPI (Key Performance Indicator) variables 
selected for analysis have common features: they have a 
limited range and one end of the range is desired and the 
other is a major failure. The used variables are network 
performance indicators that have the range from 0% to 
100% and depending if it is a success or failure type of 
indicator, the desired value is either 100% or 0%. 

The network elements’ quality indicators are scaled 
continuously and piecewise linearly to interval [0, 1] 
extremes corresponding to the worst and the best 
performance, respectively. The mapping was constructed on 
the basis of a priori information of network experts. Four 
values of the performance indicators are defined by experts: 
worst possible, very poor, satisfactory, and best possible. 
These values are scaled to 0, 0.2, 0.9 and 1 respectively and 
the scaling function is created with linear interpolation. The 
scaling function parameters can be adjusted to different 
performance indicators, different networks and target 
performance levels. After the scaling all performance 
indicators are within the same range and the same value 
refers to the same level of performance in each indicator.  

Examples of the piecewise linear scaling of are shown in 
Fig. 3. The KPIs presented are: Dropped Call Ratio (DCR) 
Radio Down-Link Quality (RX_DLQ) and Call Setup 

Success Rate (CSSR). These KPI variables are among the 
most important metrics in radio network performance 
analysis. 

 

Fig. 3.  Example of piecewise linear scaling functions on three 
variables that all have original scale in percentages. 

DCR is an example of a failure type variable that has the 
best possible value at 0% (no dropped calls) and the worst 
possible value at 100% (all the calls dropped). RX_DLQ and 
CSSR are examples of a success type variable. They both 
have the worst possible value at 0% and the best possible at 
100%. The very poor value for RX_DLQ is at 85% and for 
CSSR at 92%. The satisfactory values are at 95% and 98% 
respectively. 

 

Fig. 4.  Difference of the scaling functions of  RX_DLQ and CSSR. 

Difference of the scaling functions (Fig. 3) is shown in 
Fig. 4. They are mostly identical except in the range from 
85% to 98%. The maximum difference is at 92% and it is 
0.45, meaning 49% of the whole range (0 to 1) in scaled 
space. 

3.3 Examples with two variables 
The ideal normal situation in the scaled space will 

always be ones for every variable. In this application the 
samples located farthest away from the ideal are considered 
anomalies. In the actual application there are several 



variables but since two dimensions are the most that can be 
easily visualized, the following examples use two variables: 
RX_DLQ and CSSR. 

Distance from the ideal normal situation is colour coded 
in Fig. 5. In the ideal state both variables are at 100% on the 
upper right corner. White colour equals maximum distance 
and black equals zero. The samples A and B are located at 
(90, 95) and (95, 90). The distance from the ideal is the 
same for both points: 11.18 in the original units. 

 

Fig. 5.  Distance from the ideal state (both variables 100%). White 
colour equals maximum distance and black equals zero. 

In Fig. 6. the distance is calculated in the scaled space. 
The colouring presents the distance from the ideal state to 
that in Fig. 5. The fall of the value of CSSR is considered 
more severe and this has been utilized by the scaling. 
Therefore the distance of point B from the ideal state is 
larger than the distance from point A. 

 

Fig. 6.  Distance from the ideal state in scaled space. White colour 
equals maximum distance and black equals zero. 

In the ideal state in scaled space both variables have 
value 1. The distances from the ideal state are 0.64 for 
sample A and 0.81 for sample B. The nonlinear piecewise 
scaling has the effect that sample B is now considered more 
anomalous than sample A, which is preferred by the end 
users in this application. 

4.  EXAMPLES WITH NETWORK DATA 

The following example uses the data from micro 
basestations in a radio network. Basestation is considered 
micro if it has antenna below rooftop height. There are 191 
basestations and the data covers daily performance 
measurement values for 42 days. With some missing values 
there are a total of 7752 daily samples. Scatter plot of the 
data is shown in Fig. 7. 

 

Fig. 7.  Scatter plot of the data from Micro cells in original scale. 
Note the different scales on x and y axis. 

Normalization requires a reference data set for 
calculating the mean and standard deviation. The same 
example points A and B as previously are also displayed. In 
the normalized space it is not reasonable to calculate 
distances from the mean value of the data. Instead, the ideal 
state is also normalized using the mean and standard 
deviation of the data set.  

The distances of points A and B from the normalized 
ideal state equal 5.33 and 5.81 respectively. Sample B has 
greater distance as preferred, but the values are relatively 
close to each other. The difference of the severity of the 
samples is not as clear as it is when the piecewise linear a 
priori scaling was used. 

Fig. 8 presents a scatter plot of the a priori scaled data. 
The ideal state in scaled space is located at [1 1]. The circles 
present the equal distance contour from the ideal state. The 
proportions of the data outside the contours are 0.5%, 1% 
and 2% corresponding to 38, 77 and 155 samples in this data 
set. Two most severe anomalies (the ones that have the 
greatest distances from the ideal state) are highlighted with 
red stars. 



 

 

Fig. 8.  Scatter plot of the data from Micro cells in a priori scaled 
space with circles limiting the anomalies.  

In addition to plain detection, the anomalies can be 
clustered to further summarize the information they contain 
[18]. There is a dense cluster visible in lower right corner in 
Fig 8 and another one, not so dense in the upper left. 

Fig. 9 presents a scatter plot of the normalized data. 
Using the mean and standard deviation calculated from 
these data, the ideal state in scaled space is located at [0.95 
0.3]. The contours for anomaly thresholds are centred at the 
ideal state and represent the same percentages as in Fig 8. 

 

Fig. 9.  Scatter plot of the data from Micro cells in normalized 
scale with circles limiting the anomalies.  

The same two samples as above are highlighted with 
stars. Now in normalized data their positions are 32 and 36 
in the order and barely make it to the worst 0.5% samples. 

In the normalized space the lower values of CSSR are 
scattered widely and there are no clear clusters visible. This 
exemplifies well what Gnanadesikan et al. have pointed out 
[16]: When done efficiently, weighting and selection can 
dramatically facilitate cluster recovery. When not, 
unfortunately, even obvious cluster structure can be easily 
missed. 

4.1. Anomaly detection using 4 variables 
Here we present an example of anomaly detection using 

four performance variables. In addition to RX_DLQ and 
CSSR we have a third success type variable, Hand-Over 
Success (HO_SUCC) and one failure type variable Dropped 
Call Rate (DCR), which was introduced in Fig. 3. These 
constitute a typical minimum variable set for network 
performance monitoring. In four dimensional space single 
scatter plots can’t be used to visualize the whole space. We 
introduce the effects of scaling using the severity ordering of 
the anomalies and histograms of the distances from the ideal 
state. 

The additional variables introduced changed the ranking 
of the anomalies. The two samples highlighted with stars 
from previous example are now ranked 45 and 47 in priori 
scaled case, and in normalized case 83 and 88. 

The ordering of the top ten anomalies detected using the 
a priori scaling is compared to the results from the 
normalized data. Four of the samples are contained in the 
top ten in both cases. The eighth and tenth samples in a 
priori scaling are ranked to 53 and 36 in normalized case. 

Table 2.  Comparison of the order of the most severe anomalies 
detected using a priori scaling and normalization. 

A priori 1 2 3 4 5 6 7 8 9 10
Normalized 5 2 15 4 14 17 1 53 19 36

 
Fig. 10 shows the histogram of the distances of the 

samples from the ideal state. All the four performance 
variables were used and scaled by the piece-vice a priori 
method. There is a peak in the histogram where the distance 
is about 0.8. This suggests that there is a concentrated 
cluster present.  

 

Fig. 10.  Histogram of the distances from the ideal state in a priori 
scaled space. 

Similar histogram of the distances from the ideal state 
with the normalized data is depicted in Fig. 11.  



 

 

Fig. 11.  Histogram of the distances from the ideal state in 
normalized space. 

The distribution of the distances is concentrated close to 
zero. There are no additional peaks visible and thus the 
possible cluster structure is hidden in this case. Note that the 
distances in figures 10 and 11 are not directly comparable, 
but only the shapes of the distributions are of importance. 

5.  CONCLUSIONS 

Unsupervised anomaly detection is a very wide area of 
research and application. The range of methods varies from 
very simple to extremely complicated ones. One key factor 
is the scaling of the variables. In multivariate data the results 
of variance and distance-based methods are greatly affected 
by the scaling. Normalization is widely used but in many 
cases the results could be enhanced by incorporating a priori 
knowledge of the process in the methods.  

In this paper we have given some simple examples of the 
importance of scaling. We introduced examples of a 
piecewise linear scaling method which allows easy 
integration of end users’ knowledge. Such scaling can 
enhance the performance of distance-based anomaly 
detection methods.  

In order to use the end users’ expert knowledge, it has to 
be acquired from the users. This does not require a reference 
data set for the scaling and thus it is robust to the 
imperfection of the data available. It reduces the bias 
introduced by samples included in the reference data. 
However, this information is case specific and it has to be 
tuned for each environment. 

In real life applications, like the one presented here, it is 
unfortunately very difficult to compare the results of various 
methods as well as the effect of the scaling methods on the 
results. There are no right answers; the superiority of the 
methods is solely based on the subjective assessment by the 
end user. 
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