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Abstract - The basic estimators of trapezoidal probability 
distributions of the measured data are considered and 
approaches for theirs evaluation are proposed.. For 
symmetrical trapezoidal PDF of straight as well curved 
sides, using Monte-Carlo method of simulation, the standard 
deviation (SD) of some chosen 1- and 2-component 
estimators are evaluated  It is established that in the ratio of 
upper and bottom bases of trapezoidal PDF in the range 
from 1 to 0,35 the most accurate is the mid-range value. 
Below this range smaller is the standard deviation (SD) of 
the mean value. The best for the whole family of the 
symmetric linear trapezium PDF are two-component (2C) 
estimators as the linear form of the mean and mid-range 
values of the sample. Their coefficients are found, properties 
discussed and formulas of SD are given. The new simplified 
2C-estimator of equal coefficients is also proposed. These 
estimators successfully extend estimation of the measurand 
value as the sample mean and description of its accuracy by 
the uncertainty type A recommended in the international 
guide ISO GUM [1]. Approaches of investigation could be 
effectively applied for some other models of PDF. 

Keywords: estimators of probability density function, 
trapezoid PDF, mid-range, uncertainty evaluation.  

1.  INTRODUCTION  

Random components of measurement data can be in 
many cases more accurately modelled by non-Gaussian 
probability density distribution function (PDF) [2] than by 
Normal distribution as the range of their values is commonly 
limited. The mean value is the most effective measurand 
estimator of the n-element sample of Normal distribution. Its 
standard deviation (SD) is defined in GUM [1] as the 
uncertainty type A. For samples modelled by Normal, 
Uniform and Laplace (double-exponential) PDF 
distributions, it is presented in the paper [3] and then in [4] 
of 15th IMEKO TC4 Symposium, how to regard the data 
autocorrelation and which estimator has the smallest 
standard deviation (SD) to be chosen as the best one.  

For data processing it is very important to choose an 
effective estimator of the centre coordinate of PDF, as not 
proper evaluation entails incorrect assessment of the 
measurement accuracy.  

The main purpose of this work is the expansion of 
opportunities for choosing the best single or a few 
component estimators of empirical data modelled by more 
complex non-Gaussian distributions than the above single  

 
models. It is assumed that measurement data do not contain 
unknown systematic errors and are not self-correlated.  

The estimator of the distribution parameter should meet 
the requirements of solvency, sufficiency, efficiency and be 
unbiased [5]. First of all, efficiency of estimators is 
researched. 

2. THE SYSTEMATIZATION OF APPROACHES 
TO THE BEST ESTIMATOR CHOOSING 

Systematization of the main approaches to a problem of 
the effective estimation consists of: 
– Monte-Carlo simulation of empirical distribution 
function and its testing; 
– Resampling methods; 
– Shape coefficient application method; 
– Based on goodness-of-fit test and information about 
estimators for certain population. 

The Monte-Carlo technique based on method of inverse 
function could be implemented by the next ways:  
– evaluation of analytical expression for inverse empirical 
cumulative function and simulation from uniformly 
distributed sample by method of inverse function; 
– the mixture algorithm is carried out simulation on each 
of intervals for grouped data (histogram). 

Resampling methods, that are so popular in statistics 
recent years, include jackknife method and different 
techniques of bootstrap method. 

The next approach based on dependency of estimators 
SD ratio on the kurtosis value [6-8]. 

The last approach is prevalent in metrological practice. It 
is provided by theoretical models of population 
distributions, and theirs known features. For example, a 
more effective estimator of measurand of Uniform samples 
is mid-range and for Laplace sample - median, respectively 
[3, 4]. Using one of goodness-of-fit tests (Kolmogorov–
Smirnov , Cram´er–von Mises, Chi-Square and other tests) 
we make decision about the best estimation choice. 

All considered methods could be applied in software 
packages for measurement data processing and measurement 
uncertainty evaluation, that are popular last years. 

 
3. SINGLE COMPONENT ESTIMATORS 
 

Let's check up which one of single-component 
estimators of PDF of particular samples: mean X , mid-
range 2Vq /  or median medX , satisfies the requirement of 



efficiency, i.e. has the least-possible sum of the square 
dispersion, denotes a minimum standard deviation in 
comparison with other estimators. Similarly, it is possible to 
receive results for other basic non-Gaussian distributions. In 
columns 3 – 5 of tab. 1 values of standard deviations of 
three estimators of a few basic distribution models of 
empirical data (for demonstration of difference order only) 
are presented.  

Standard deviation of the best single component 
estimator of the particular non-Gaussian distribution is 
significantly less then of other estimators even if difference 
between their values, e.g. between midrange and mean, is 
small. This is the cause to search for estimators better then 
sample mean. 

4. THE BEST SINGLE COMPONENT 
ESTIMATORS  of TRAPEZE  DISTRIBUTIONS 

4.1. Case of linear trapeze 
 It is important to consider the problem of choice of an 

effective estimator for composition of simple distributions. 
In the measurement systems practically all analogue signals 
now are digitalised, and then uniform distributions are very 
common in these systems. So, with convolution of two 
different uniform distributions we get PDF as a symmetrical 
trapezoid of linear sides, from triangular to the uniform 
distribution as its boundary cases. The effective estimators 
of the distribution centre of the triangular and uniform 
distributions are the sample mean and the mid-range 
respectively – see again Table 1.  

The aim of the following research is to find a position of 
border separating trapezoids of better mid-range or mean 
values. There are two ways to obtain the trapezoid in MC 
simulations :  
– to generate two uniform distributions and theirs sum [2];  
– to use the inverse function method (derived in [10]).  

Both techniques were tested. Samples from population 
with trapezoidal distribution with β=a/b ratio of their shorter 
upper a and longer bottom b basis are simulated and stable 
results are obtained. Obviously (0;1)∈β  was taken. Fig. 1 
shows how standard deviations of mean and mid-range are 
changed with a ratio β and number of observations n. 
Median SD is significantly larger and is not shown on fig .1.  

The crossing of surfaces on β=0,35 is observed. It is 
independent from n. The same result is obtained by 
convolution of two rectangular distributions with the ratio of 

It is possible to make a conclusion, that at a ratio 
0,35>β  an effective estimator is the sample mid-range; for 
0,35<β  – the sample mean. The result remained stable for 

various sample volumes from 20 to 10 000. Novitzky and 
Zograph in their original book [6] show dependence of 
estimator (mid-range) efficiency on a type of distribution. 
Variances of estimators are equal when counter-kurtosis æ 
=0,675. 

 

a) 

 
 

b) 

 
 
Fig. 1. Dependences of sample mean and midrange standard 

deviations S on ratio β of linear trapeze bases and of sample size n 

ranges about 2,05 (it corresponds to the above β value). This 
value of æ corresponds to kurtosis E=1/æ2=-0,805. 
Dependence of E on ratio β of trapezium bases β is given on 
Fig. 2. Then we can find that E=-0805 corresponds to 
β=0,35.  

Тable  1. Comparison of sufficiency of different estimators and expression of the standard uncertainty 

Distribution 
Standard deviations of sample estimators The most effective 

estimator 
Standard uncertainty   
of the best estimator   meanS  midrangeS medS

Normal 0,010 0,220 0,013 sample mean /A xu S n= [1] 

Uniform 0,006 1,4·10-4 0,010 mid-range ( ) 2
1

12 +
+

− n
n

n
V  [3],[4] 

Double-exponential 0,007 0,870 7·10-5 median / 2xS n [3],[4] 

Triangular  0,0040 0,0045 0,0049 sample mean /xS n [3], [6] 

Arcsine 0,067 5·10-5 0,146 mid-range 4 25 /xS n⋅ π [6] 



 

Fig. 2. Coefficient of kurtosis E  as function of  ratio of bases β 

 4.2. Case of curvilinear trapeze 

In Table 1 of GUM Supplement 1 [2] the curvilinear 
trapezoidal of concave sides is given. This PDF model has 
the symbol CTrap(a,b,d). It is proposed to be used when 
limits of upper a and lower b sides are inexactly given, i.e. a 
± d and b ± d, where a, b and d, with d>0 and a + d < b − d, 
are specified. Histogram of these type simulated data is 
given on Fig. 3. 

 

        

      Fig. 3. Example of curvilinear trapezoid PDF  

Fig. 4a,b shows how standard deviations of main 
estimators depend on the number n of observations in the 
sample and a ratio βc=(a2-a1-2d)/(b2-b1+2d) of curvilinear 
trapezoid basis. It is shown that median here is the best 
single component estimator if  0<βc<0,08; mean - if  
0,08<βc<0,5 and mid-range if 0,5<βc<1. But, it should be 
taken into account, that in practice, uncertainty of 
uncertainty may be limited up to even 20 -30%, then: 

(1 )( ) ( )0,3 0,54
2 (1 ) 2

c

c

b a b ad
β

β
β

−− −
= ⋅ = ⇒ =

+
 

and could be decided that the mid-range may be applied as 
the most effective estimator  to the border drawn in Fig. 4. 

To increase accuracy of the measurement result other 
types of estimators, which contain a few components, may 
be also considered. 

According to considered approaches, ratio of these 
components  could be found by modelling and selection of 
the best values, or by known analytical equations. These 
equations are derived by numeric methods too and they 
based on shape coefficients or parameters of certain model 
of distribution. 

 

a)  

 

b) 

     

Fig. 4. a) Dependences of single component estimators on a ratio of  
bases β and on sample size n of the curvilinear trapezoidal PDF,  b) 
visualization of crossing points 

5. MULTI-COMPONENT  ESTIMATORS OF 
TRAPEZE DISTRIBUTION 

5.1. Two- and three-component estimators based on 
kurtosis value  

Zakharov and Stephen in [7, 8] offer the 3-component 
estimator of measurand value for non-Gaussian PDFs 

 
1 2 /2 3

ˆ
V medX k X k q k X= + +                    (1) 

as the efficient  estimate of the expectation. Coefficients 1k , 

2k  and 3k  depend on the kurtosis E of the distribution of 
observation results, when 
For linear trapezoid ( 1,15; 0, 2)E∈ − −  and two such 
coefficients are enough only [7]: 

1 1,05 1, 22k E= − + , 2 0,05 0,22k E= − − , 3 0k = . 

Our modelling shows that proposed estimator is biased. 
So, it is not consistent with the requirements of the best 
estimator. For unbiased estimator the sum of all three 
coefficients must be equal to 1. From MC investigation: 

1 1,05 1, 22k E= − + , 22,005,12 −= Ek , 3 0k = .      (2) 

Standard deviations SD of estimators for linear trapezes 
of different β are presented on Fig.5.  



 

Fig. 5. Dependences of standard deviations for different 
statistics on a ratio of bases (linear trapeze) 

In case of the curvilinear trapezium of kurtosis 
( 1, 2;0, 2)E∈ −  following coefficients have been obtained   
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The results of application (2) with above coefficients are 
given in fig. 6. One can see, that in a short interval 

[0;0,8]cβ ∈  the best estimator is median, that does not 
appear in approach proposed in [7] and [8].  

 

Fig. 6. Dependences of standard deviations for different 
statistics on a ratio of bases (curvilinear trapeze) 

5.2.Two-component estimators for trapeze distributions  
Let’s broadly investigate problems for a whole family of 

linear trapezoids and find more effective unbiased two-
component estimator. It could be expressed by  

 
1 1 /2(1 )eff VX k X k q= + − ,                     (4) 

This estimator was analyzed by changing 1k  in (4) for
 different trapeziums from rectangular to triangular shapes 

and values of 1k  corresponding to minimum SD were 
obtained. Results with the uncertainty under 10% are as 
follows:  

  
1

2 1

0,12 0,56, 0 0.5
,

1 , 0.5 1

0,12 0,44, 0 0.5
1 .

, 0.5 1

if
k

if

if
k k

if

β β
β β

β β
β β

− + < <⎧
= ⎨ − < <⎩

+ < <⎧
= − = ⎨ < <⎩

         (4a) 

The results are stable even when n is changed from 10 
up to 10000 for trapeziums with different ratio of their 
bases. Dependences of SD on 1k  for boundary cases of 
trapezium (triangular and rectangular PDF) are shown in Fig 
7. Application of (4) gives the dependence on β as on Fig. 8. 

Let us analyze simplified 2C-estimator based on two 
equal components  

 
2/2

1
2
1~

VqXX ⋅+⋅= ,                     (5) 

 

The results of its MC modelling for linear trapezoid are 
given also on Fig. 8. From these results one can see that 
simple 2C-estimator (3) is the best for a wide range of 
trapeziums ( 0 0,75β< < ).Values β>0,75 correspond to the 
ratio of ranges over 8. It means that one of uniform 
distributions is dominant. For this case mid-range is the best 
estimator (see Fig. 6). 

The results of investigations, if formula (5) is applicable 
also for curvilinear trapezoid, are given in Fig. 7. One can 
see that it is not the most effective estimator for a full range. 
From analyzes of some cases of β >0,54 it is recommend to 
use in practice two given below formulas of the best 
estimator: 

/2

/2

1 1 , 0,54 0,8;
2 2

0,8.

V
eff

V

q X if
X

q if

β

β

⎧ ⋅ + < <⎪= ⎨
⎪ >⎩

    

Additional investigations are needed for the full range of β.  
 

 

Fig. 7. Dependences of standard deviations on 1k  

 

Fig. 8. Dependences standard deviations of the different 
statistics’ on a ratio of bases 



Variance of the best estimator should be minimum. Lets 
try to find analytically its value of k1. From (4) it is: 

( ) ( )222
1 1 /2[ ] [ ] (1 ) [ ] ,eff VS X k S x k S q= ⋅ + − ⋅

 
 

where [ ] / ,xS X n= σ  xσ  
is the SD of whole population. 

Coefficient k1 could be find  from  
2

1

[ ]
0effS X

k
∂

=
∂ . 

 After calculations:       
2

/2
1 2 2

/2

[ ]

[ ] [ ]
V

V

S q
k

S x S q
=

+
,           (6)

 
 

For triangular distribution (β =0) [4] and
 

2 2
/2

3 (4 )[ ]
2V XS q

n
⋅ − π

= σ ,      1
3 4 0 56

2 3 4
k π

π
−
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+ −
( ) ,

( )
.
 

 
It  coincides with results of the earlier MC simulation. 
 

For trapezoid with
 
β = 0,35

  
we find that

 /2[ ] [ ]VS X S q= ,  

and from (6): 
2 2

1
2 0,5X Xk

n n
σ σ

= = .
 

It coincides with (4a). 
 

For rectangular distribution (β =1):
 2

1 2 2 2

3
32( 1)( 2) ,

3 2 9 2
2( 1)( 2)

X

X X

nn nk
n n

n n n

σ
+ +

= =
σ σ + +

+
+ +  

 
If n→∞, k1→0.

 
For 30n = , 1 0,04k = and n=10: 1 0,1k = , so 

these results are not very far from the above k1=0 for  n→∞. 
 

6. UNCERTAINTY EVALUATION 

6.1. Theoretical background 
Because of correlation between minX  and maxX  

conjoint density function has to be found here. Standard 
deviation SD of two-component estimator (4) is  

  

2 2 2 2
1 1 /2 1 1 /2[ ] [ ] (1 ) [ ] 2 (1 ) [ ] [ ]eff V VS X k S X k S q k k S X S qρ= + − + −

where: [ ] xS
S X

n
= ;   

2 2
2

/2
(1 )[ ]
16 ( 1)( 2)V

V nS q
n n

β−
= ⋅

+ +
. 

In /2[ ]VS q  it was taken to account that 

min max[ ] [ ]S X S X≈ . The recommendations on correlation 
coefficient values are in Table 2.  

 For simplified two-component estimator (5) of 
k1=k2=0,5 proposed in this paper standard uncertainty is: 

  
2 2

/2 /2

22 2 2

1[ ] [ ] [ ] 2 [ ] [ ]
2

(1 )1 (1 ) 2 .
2 16 ( 1)( 2) ( 1)( 2)

A eff V V

xx

u S X S X S q S X S q

S VS V n
n n n n n

ρ

ββ ρ

= = + + =

−−
= + ⋅ +

+ + + +

               

If 0ρ →   

2 2
/2

1[ ] [ ] [ ]
2A eff Vu S X S X S q= = +  

          

Table 2. The values of correlation coefficients 
n [100; 200) [200; 300) [300; 500) n →∞
ρ 0,25 0,2 0,15 0ρ →  

 
 The difference between analytical results and modeling 

is less than 5%. 

6.2. Measurand value and uncertainty calculations  
It has to be illustrated below by the numerical example. 

Data values of the sample size n=200 obtained in simulated 
experiment are shown in Fig. 9. As no other information is 
available then should be presume that this observations are 
not autocorrelated and cleaned from systematic errors. Let’s 
find the measurement result as the best estimator of 
measurand value, its standard and expanded uncertainties. 

The proper PDF model of this sample has to be chosen. 
Sample observations are arranged into 15 groups (Fig. 10).  

 

 

Fig. 9. Values of sample observations  

 

Fig. 10. Histogram of data relative frequencies  

Hypothesis about compliance with three different 
theoretical distributions are verified by 2χ

 
test.  

Parameter β of theoretical distribution could be chosen 
by the minimum value of 2χ statistic

 
or by least square 

method. 
Number of freedom is 11. Compliance with Uniform and 

Normal distributions is not fulfilled, but with linear 
trapezoidal distribution is accepted at significance level 
0,05, because: 



7,193,17 2
05,0,11

2 =<= χχ . 

The trapezoid PDF model of 5.38 and 1.79 bases are found. 
Its parameter β=1/3. As the best estimator of the measurand 
value is used (4). Values of distribution parameters are: 
 

        22,873X = , /2 23,010Vq = , 22,942X = . 
 

Sample standard deviation: 1,309XS = . 

Standard deviation of the mean: [ ] / 0,0926xS X S n= = .
 Standard deviation of the mid-range: 

 

2

/2
(1 )[ ] 0,089.

4 ( 1)( 2)V
V nS q

n n
β⋅ −

= ⋅ =
+ +

 

 
Standard uncertainty of the 2-component estimator is 
 

2 2
/2 /2

1 [ ] [ ] 2 0, 2 [ ] [ ] 0,0703.
2A V Vu S X S q S X S q= + + ⋅ ⋅ ⋅ =  

 

The value of uncertainty for estimator  (5a) does not differ 
significantly from above.  
Coverage factor:. 96,1)95,0( ==PK  For

  

coverage 
probability P expanded uncertainty is: 
 

AuPKPU ⋅= )()( . 95,0),18,001,23( =±= PX  
 

Results for all three models are put together in Table 3. We 
could use KS-test(Kolmogorov-Smirnov). 

Table 3. Representations of the measurement result and accuracy 

  By standard uncertainty by expanded uncertainty 

X  
 

22,87; 0,09AX u= =  
95,0),19,087,22( =±= PX

95,0),06,23;68,22( =∈ PX  

/2Vq
 

 23,01; 0,09AX u= =  95,0),18,001,23( =±= PX  
95,0),19,23;83,22( =∈ PX  

X  22,94; 0,07AX u= =  
95,0),14,001,23( =±= PX

95,0),15,23;87,22( =∈ PX  
 

 

7. FINAL CONCLUSIONS  
 
● It is very important to choose the most accurate, 

effective estimator at data processing for correct estimation 
of the measurand uncertainty corresponding to Au  (type A).  

● For samples of distributions modelled by trapezoid, 
the best single-component estimator depends on its shape. If 
it is nearer to rectangular (1≥ β ≥0,35) then the best effective 
estimator of measurand is the mid-range. Below β=0,35 up 
to β=0 of the triangle distribution the sample mean is better. 

● The 2-component estimator as the linear form of above 
two estimators is the best for samples of trapezium PDF. 

● For the broad range of trapezium shapes (0,75 ≥ β ≥0)  
the simplified form of this double component estimator of 
equal both coefficients k1= k2 = 0,5 is proposed and may be 
used with sufficiently good accuracy acceptable in practice. 

● For a number of sample observations n ≥ 10 all 
coefficients are practically independent from n. For smaller 

size n<10 individual modelling is needed for trapezium 
PDF. 

● All conclusions are positively tested by MC 
simulations and also by several numerical examples. 

●  Estimators of trapezoidal distributions given in this 
work could be applied not only in measurement practice and 
for  extending of GUM recommendations [1, 2, 11], but also 
in the statistics, when trapezoidal models are also used [9]. 

 One could forecast that way to obtain two-component 
measurand estimators for samples modelled by convolution 
of other two distributions such as Uniform and Normal, 
Uniform and arcsine, etc. may be similar [12].  
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