
XIX IMEKO World Congress

Fundamental and Applied Metrology

September 6−11, 2009, Lisbon, Portugal

SMART TRANSDUCER BLOCK ENABLES PLUG & PLAY TRANSDUCERS

Vítor Viegas

1,2
 , J. M. Dias Pereira

1,2
 , P. Silva Girão

2

1
ESTSetúbal-LabIM, Instituto Politécnico de Setúbal, Setúbal, Portugal

2
Instituto de Telecomunicações, Lisboa, Portugal

vviegas@est.ips.pt , joseper@est.ips.pt , p.girao@lx.it.pt

Abstract − The paper presents a dedicated IEEE 1451.1
Transducer Block that enables plug & play transducers

according to the recommendations of the IEEE 1451.4

standard. The Transducer Block is self-configurable based

on the information stored in the Transducer Electronic Data

Sheet (TEDS): basic TEDS and transducer type templates

are used for transducer self-identification; and calibration

templates are used for transducer self-calibration. The

Transducer Block is also network-enabled by exposing its

functionalities through a set of Web Services.

Keywords: Smart sensor, IEEE 1451, TEDS, Web

Service

1. INTRODUCTION

The IEEE 1451 family of standards [1] simplifies

transducer connectivity to existing networks by defining a

set of standardized hardware and software interfaces where

heterogeneous components can connect and work together.

The IEEE 1451.1 standard [2-5] defines an information

model for connecting processors to networks and

transducers. The processor, known as Network Capable

Application Processor (NCAP), acts as a bridge between

transducers and the network: on the field side, an abstraction

layer provides high-level functions to interact with

transducers; on the network side, an abstraction layer

provides high-level services to handle network requests; in

the middle, the NCAP application receives data from both

sides (the field and the network), processes it and decides

the next state of the system.

The IEEE 1451.4 standard [6] defines a hardware

interface that allows analog legacy transducers to exchange

digital data with the NCAP. It also defines the format of the

Transducer Electronic Data Sheet (TEDS), a data structure

embedded on the transducer that describes its identity, type,

operation and attributes. This information is all the NCAP

needs to create a self-configurable software interface –

known as Transducer Block in the 1451.1 terminology – to

play with the transducer.

2. TRANSDUCER BLOCK

We present a self-configurable Transducer Block that

works with 1451.4 transducers connected to Data

AcQuisition (DAQ) boards compliant with the DAQmx

driver from National Instruments (NI). For this reason, the

Transducer Block was named “DAQmxTBlock”.

The DAQmxTBlock works with 1451.4 systems of type

tier-2, meaning that it establishes a point to point connection

to a single-node transducer and reads its TEDS through the

Mixed Mode Interface (MMI). It does not support

multimode features or extended TEDS capabilities.

The life-cycle of the DAQmxTBlock can be described as

follows:

1) At design-time, using the Measurement and

Automation Explorer (MAX), a software tool provided by

NI, the developer creates tasks involving one or more

channels. A task is a set of properties that completely

describe the process of acquiring/updating data (such as

number of samples, sampling frequency and trigger

settings); a channel is a hardware input/output configured to

acquire/generate a signal. Each channel can be automatically

configured (without any human intervention) by reading the

embedded TEDS of the attached transducer. If the

transducer has no embedded TEDS, the developer can

associate it a virtual TEDS in the form of a .ted file (this

feature is useful for older transducers or DAQ boards that do

not support the MMI). Detailed information about the

configuration process can be found in [7-8].

2) At run-time, the DAQmxTBlock object is created,

initialized and executed. During initialization, the

DAQmxTBlock loads all pre-defined tasks and creates

auxiliary objects to support them, more precisely one

1451.1-Parameter for each task and one DAQmxTChannel

for each channel. The 1451.1-Parameter provides methods

to read/write data from/to task transducers, as well as a

metadata structure that describes the meaning of the data

exchanged. The DAQmxTChannel provides methods to get

information about the channel where the transducer is

attached to, including methods to retrieve the underlying

TEDS. All these objects register themselves on the network

as Web Services [9] making possible to access their methods

remotely.

3) During execution, the NCAP application interacts

with the DAQmxTBlock and related objects. The

DAQmxTBlock is destroyed when the NCAP application

ends.

The DAQmxTBlock and related classes were developed

using Visual Basic .NET and Visual Studio 2008. They were

compiled as a Dynamic Link Library (DLL) in order to

make them reusable for any Windows application. Their

relations, represented by numbered circles in figure 1, can

be described as follows:

1) The DAQmxTBlock owns n 1451.1-Parameters, each

one corresponding to a pre-defined task. The 1451.1-

Parameter acts as a networking-visible variable holding the

data acquired/updated by the task. The properties of the task

are used to fill the metadata structure of the 1451.1-

Parameter.

2) The DAQmxTBlock owns m DAQmxTChannel

objects, each one corresponding to a hardware input/output

configured to acquire/generate a signal.

3) A task can involve one or more channels making m≠n.

4) Each DAQmxTChannel connects to a transducer

having access to its TEDS.

Table 1 briefly describes the methods implemented by

the classes DAQmxTBlock and DAQmxTChannel.

3. APPLICATION EXAMPLE

To exemplify the use of the DAQmxTBlock, we built a

small Web-enabled weather station that measures

temperature, relative humidity, dew point and heat index.

Two physical sensors are used: a thermoresistance to

measure the temperature and a variable capacitor to measure

the relative humidity. The dew point (DP) and heat index

(HI) are computed from the sensed data using the following

equations [10-11], where T and F represent the temperature

in Celsius and Fahrenheit degrees respectively, and H

represents the relative humidity (between 0 and 100):









−

+

×
−

















+

+

×
×

=

100
ln

7.237

271.17
271.17

100
ln

7.237

271.17
7.237

H

T

T

H

T

T

DP
 (1)

)1099.1()10528.8(

)10229.1()10482.5(

)10838.6()2248.0(

)143.10()049.2(379.42

22624

2322

23

HTHT

HTH

THT

HTHI

×××−×××+

×××+××−

××−××−

×+×+−=

−−

−−

−

 (2)

In terms of hardware, the weather station includes the

following equipments (figure 2):

1) A three-wire PT100 thermoresistance, part number

745691-01 from NI, compliant with the DIN 43760

standard.

2) A relative humidity sensor, model HIH4000-001 from

Honeywell.

3) DAQ system from NI composed by a chassis

(NI cDAQ-9172), a general-purpose analog input module

(NI-9205), and a universal analog input module with signal

conditioning for resistive sensors (NI-9219).

Fig 1. DAQmxTBlock context.

Table 1. DAQmxTBlock and DAQmxTChannel overview.

Class Name: DAQmxTBlock

Class ID: 1.1.1.4 (inherits from Block)

GetDriverVersion(): Returns the DAQmx driver

major and minor versions.

GetLastDAQWarning(): Returns a string describing

the last exception occurred in the DAQ infrastructure.

Class Name: DAQmxTChannel

Class ID: 1.1.2.5 (inherits from Component)

GetChannelType(): Returns the channel type

(analog input/output, digital input/output or counter

input/output).

GetPhysicalName(): Returns a string identifying the

physical terminal where the transducer connects to (ex.

“dev1/ai2”).

GetRelatedParameter(): Returns the name of the

1451.1-Parameter that consumes/provides data from/for

this channel.

GetTEDSBitStream(): Returns the raw TEDS as a

byte array.

GetTEDSManufacturerID(): Returns the

manufacturer of the transducer from its TEDS.

GetTEDSModelNumber(): Returns the model number

of the transducer from its TEDS.

GetTEDSSerialNumber(): Returns the serial

number of the transducer from its TEDS.

GetTEDSTemplateIDs(): Returns the identifiers of

the templates that compose the TEDS.

GetTEDSVersionLetter(): Returns the version

letter of the transducer from its TEDS.

GetTEDSVersionNumber(): Returns the version

number of the transducer from its TEDS.

4) Personal Computer number one (PC1) with Windows

XP operating system. This computer executes the NCAP

application that acquires data from sensors, calculates

meteorological variables and handles Intranet requests. The

PC1 connects to the DAQ system by means of a high-speed

Universal Serial Bus (USB).

5) Personal computer number 2 (PC2) with Windows XP

operating system. This computer executes the Human

Machine Interface (HMI) application that requests

meteorological variables from the NCAP and presents them

to the user. The HMI application has a Web interface that is

accessible by a common Internet browser.

Both sensing elements are legacy sensors that do not

support the embedded TEDS feature or the MMI interface.

For that reason, we had to create two virtual TEDS files and

manually associate them to the sensors.

The NCAP application was developed using the library

IEEE1451Dot1.dll, which was developed by the authors and

presented in [12]. The NCAP application includes three

processing Blocks:

1) The top-level NCAPBlock, which represents the

NCAP process as a whole and keeps track of all underlying

network-visible entities.

2) The DAQmxTBlock, which is in charge of acquiring

data from both sensors and presenting it as 1451.1-

Parameters. It also provides access to channel properties by

means of DAQmxTChannel objects.

3) The MeteoBlock, which is a dedicated 1451.1-

FunctionBlock that computes the dew point and heat index

from the temperature and relative humidity. The two

computed variables are presented as 1451.1-Parameters as

well.

The NCAP application starts by creating all processing

Blocks and their owned objects. Every remotable object

registers itself on the network as a Web Service. After

initialisation, the NCAP application enters on a timed loop

where it updates all meteorological variables once per

second.

As shown in figure 3, the front panel of the NCAP

application is composed by a tree that lists hierarchically all

network-visible objects. Two columns are provided to show

the state of all Blocks and the value of all 1451.1-

Parameters. An overview of the selected object is given in

the text box at the bottom.

The HMI application was developed using LabVIEW 8.6

as shown in figure 4. Four numeric indicators are used to

present the meteorological variables, which can be refreshed

on demand. The buttons named “Get TEDS” are used to

retrieve the TEDS of the corresponding sensor, which is

presented in the form of a human-readable table.

Fig 2. Weather station apparatus.

Fig 3. NCAP application running on the PC1.

Fig 4. HMI application running on the PC2.

Both applications interact using exclusively the

client/server communication model (the HMI application is

the client and the NCAP application is the server).

Whenever the user clicks one of the buttons in figure 4, the

HMI application creates a proxy at run-time and passes it

the dispatch address of the remote service. If both parts bind

successfully, the proxy executes the remote call, collects the

results and presents them to the user.

In addition, the HMI application is Web-enabled by

using the Web Publishing Tool provided by LabVIEW. This

tool publishes the HMI application on the World Wide Web

(WWW) making it accessible on any computer with an

Internet browser.

4. RESULTS

The proposed solution was tested in real conditions. The

NCAP application worked as expected: sensor readings

performed well, the dew point and heat index were

computed correctly and all Web Services were visible on the

Intranet. Unfortunately, the front panel seemed to be frozen,

only responding to user actions once per second. This

problem has to be solved in the future.

The HMI application also worked as expected: all

remote calls performed well and all returned values were

consistent (see figure 4 again). Both TEDS structures were

retrieved successfully and the Web interface worked without

problems (see figure 5).

5. CONCLUSIONS

This paper described a Transducer Block that works with

pre-defined DAQmx tasks and 1451.4-enabled transducers.

The Transducer Block was successfully tested on a NCAP

application intended to do meteorological measurements.

For each task, the Transducer Block automatically created a

Parameter object to hold transducer data and a

DAQmxTChannel object to get channel information

(including TEDS structures).

The objects of the NCAP application were exposed as

Web Services and were consumed by a client application

built in LabVIEW. The client worked as expected, not only

locally but also across the Internet by means of its Web

interface.

REFERENCES

[1] Eugene Y. Song, Kang Lee, “Understanding IEEE 1451 –

Networked Smart Transducer Interface Standard”, IEEE

Instrumentation and Measurement Magazine, Vol. 11, No. 2,

pp. 11-17, April 2008.

[2] IEEE Std 1451.1, “IEEE Standard for a Smart Transducer

Interface for Sensors and Actuators – Network Capable

Application Processor (NCAP) Information Model”, USA,

2000.

[3] Vítor Viegas, J. M. Dias Pereira, P. Silva Girão, “A Brief

Tutorial on the IEEE 1451.1 Standard”, IEEE

Instrumentation & Measurement Magazine, Vol. 11, No. 2,

pp. 38-46, April 2008.

[4] Kang Lee, Eugene Song, “A Wireless Environmental

Monitoring System Based on the IEEE 1451 Standards”,

Instrumentation and Measurement Technology Conference

(IMTC), Sorrento, Italy, April 2006.

[5] A. Stepanenko, K. Lee, R. Kochan, V. Kochan, A.

Sachenko, “Development of a Minimal IEEE 1451.1 Model

for Microcontroller Implementation”, IEEE Sensors

Applications Symposium (SAS), Houston, Texas, USA,

February 2006.

[6] IEEE Std. 1451.4, “IEEE Standard for a Smart Transducer

Interface for Sensors and Actuators – Mixed-Mode

Communication Protocols and Transducer Electronic

Datasheet (TEDS) Formats”, USA, 2004.

[7] “Upgrading Your System for Smart TEDS”, NI Tutorial,

http://zone.ni.com/devzone/cda/tut/p/id/2925.

[8] “Upgrading Your System for Virtual TEDS”, NI Tutorial,

http://zone.ni.com/devzone/cda/tut/p/id/4470.

[9] Gustavo Alonso, Fabio Casati, Harumi Kuno, Vijay

Machiraju, “Web Services – Concepts, Architectures and

Applications”, Springer, Germany, 2004, ISBN 3-540-

44008-9.

[10] http://en.wikipedia.org/wiki/Dew_point

[11] http://en.wikipedia.org/wiki/Heat_Index

[12] Vítor Viegas, J. M. Dias Pereira, P. Silva Girão, “Next

Generation Application Processor Based on the IEEE 1451.1

Standard and Web Services”, International Instrumentation

and Measurement Technology Conference (I2MTC),

Victoria, British Columbia, Canada, May 2008.

Fig 5. Accessing the HMI application on the Internet.

	PagNum1452: 1452
	ISBN1452: ISBN 978-963-88410-0-1 © 2009 IMEKO
	PagNum1453: 1453
	PagNum1454: 1454
	PagNum1455: 1455

