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Abstract − The objective of this article is an attempt to
measure complexity and regularity of the physiological
signals during sleep in direction of detection and
classification of the sleep apnoea syndrome. We use
approximate entropy (ApEn) and sample entropy (SampEn)
to assess diversity of consecutive breathing patterns.
Experimental investigations are preceded by the theoretical
and computer analysis for the example of stochastic process
MIX(P) and the cardiorespiratory PNEUMA model.
Realisation of the research procedure resulted in the
statement of the potential of the algorithms to distinction
between normal and pathological respiratory conditions
during sleep and quantitative evaluation of the observed
changes. In conclusion, some important directions were
outlined for the future studies.
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1.  INTRODUCTION

The issue of the evaluation of the complex systems is an
area of research interests both from the theory point of view
as well as its application [1, 2, 3]. Objects complexity
manifests in the complexity of their behaviours, recorded
during observation of the output signals. The natural
consequence of it is also the systematics, which is based on
the evaluation of the regularity or variability of the signals
and systems. A good example of such objects is the
respiratory systems with its intra-periodic and breath-to-
breath variability [4, 5, 6, 7]. There are the reports pointed at
classifying complexity of the processes and their association
with the normal and pathological regime of work of the
system [1, 2, 8, 9]. A quite substantial challenge is the
reconstruction of acquired signals as a conglomerate of
intermingled processes with various natures (deterministic
or stochastic, stationary or non-stationary, with lumped or
distributed character) and scales (micro-, macro-world). A
respiratory disorder during sleep – sleep apnoea syndrome
(SAS) – is interesting also for that reason and still needs the
solution [4, 10, 11]. Therefore, one of the question is how
can we compare such tracings?

Regularity or its lack can be depicted conceptually
adequate to the level of arrangement of the data set. The

typical indexes for such formulation are the entropic-like
measures [12, 13]. In the paper, the approximate entropy
(ApEn) and sample entropy (SampEn) are explored to assess
their usefulness in measurements of occurrence of
systematic rules during sleep. The algorithms are located in
a range of nonlinear dynamics method, which stands for the
front of the modern research in the domain of physiological
data processing. After implementation of the theoretical
tools, we tested their properties and calibrated them for the
application on example of the respiratory signals recorded in
the group of subjects: normal, with central and obstructive
sleep apnoea syndrome. The core tests were aimed at
quantitative identification of the symptoms between the
members of the group. Regularity assessment was
performed on the set of the signals acquired during the
polisomnography.

2.  METHODS

Approximate entropy and sample entropy was proposed as
a tool for finite and noisy time-series analysis. The methods
examine the data set for similar epochs: more frequent and
more similar epochs lead to lower values of ApEn or SampEn.
Their rigorous definitions and apllication details can be found,
e.g. in [14, 15, 16, 17]. Given N points, the family of statistics
ApEn(m, r, N) is approximately equal to negative average
natural logarithm of the conditional probability that two
sequences that are similar for m points remain similar, that is,
within a tolerance r, at the next point. Thus, a low value of
ApEn reflects a high degree of regularity [17]. To avoid the
occurrence of ln(0) in the calculation, the ApEn algorithm
counts each sequence as matching itself. This solution makes
the approximate entropy the biased estimator.

SampEn statistics is free of the bias caused by self-
matching. Furthermore, in contrast to ApEn(m, r, N), which
calculates probabilities in a template-wise fashion,
SampEn(m, r, N) calculates the negative logarithm of a
probability associated with the time series as a whole [17].

Both, ApEn and SampEn were calculated via a short
computer code. The advantage of the algorithms is
insensitivity to noise and artifacts, by introduction of
filtering properties of r and probabilistic form of the
comparisons (of m-points sequences), respectively.

The correctness of the applied procedures and the
properties of the theoretical tools – ApEn and SampEn –



were tested with the family of MIX(P) processes, defined as
in [14, 15] (Fig. 1).

Fig. 1.  Family of stochastic processes MIX(P) with controlled
parameter P = [0.1, 0.4, 0.8].

Methodological idea of analysis of the complex systems
and processes assumes exploitation of models of the
undertaken object. Such attempt enables analysis of
characteristics difficult to observe/measure during real
experiment, giving explanation for ‘hidden’ properties and its
various complex (inter-)realisations. Models and signals
generated into them are also useful during designing and
calibration of the new theoretical tools for system and data
exploration. This attempt was also the part of the reported
investigations. During the research the PNEUMA analogue of
the cardiorespiratory system interactions was used [18, 19,
20]. Its main structural description was depicted in Fig. 2.
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Fig. 2. Architecture of the main flows between the subsystems in
the cardiorespiratory PNEUMA model.

In the last stage, the usefulness of the measures for
research and/or ambulatory work in the domain of the
respiratory measurements were tested in the set of the
signals (mouth and nasal flow - TP, SaO2, C3-A1, O1-A2,

EKG, EMG, thorax movements – RSP1, abdomen
movements – RSP2, body position – RK) measured in
normal subjects and patients with the symptoms of central
and obstructive sleep apnoea syndrome. Trends were
acquired with the polisomnograph produced by Elmiko,
Poland. Analysis was conducted directly on the signals
represented in a regime of recording and after
transformation to RRV time-series domain (respiratory rate
variability time-series).

3.  RESULTS

The first step of the investigations was the verification of
correctness of application of the ApEn and SampEn
algorithms. The tests were aimed also at exploration of the
general properties of the procedures.
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Fig. 3.  Detection properties (with SD) of ApEn(2, r, 1000) and
SampEn(2, r, 1000) for the different width of the filter r as a
function of the level of randomness (P) of MIX(P) process.

Regarding to the assumptions, second activity can be helpful
in calibration of the investigated theoretical tools for a case
of application to a concrete time-series representation, which
was suggested in [14, 15, 21]. The example results were
presented in Fig. 3 and Fig. 4.
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Fig. 4.  Relation between ApEn(2, r, N) and SampEn(2, r, N) (with
SD) for various length N of the data and width of the filter r; during

all simulations parameter P in MIX(P) was fixed as equal to 1.
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Simulations show that even for very restrictive
properties of the filter r assessment of SampEn continue to
be sensitive and adequate on components of the signal,
although SD of such estimations rise with P. SampEn is also
more unaffected than ApEn in a case of operating on short
sets of data. As can be seen in Fig.4, taking the longer time-
series under processing can even reduce SD of SampEn,
whereas such action not assures fast and reliable calculations
of ApEn.

Administering the PNEUMA model we were able to
imitate the condition for healthy subject and patient with the
symptoms of sleep apnoea, both central and obstructive.
Sensitivity and potential of the applied theoretical tools for
physiological time-series analysis to differentiate between
healthy and pathological patterns are well described
(qualitatively and quantitatively) in Fig.5−Fig.8. These
example plots for abnormal conditions concern obstructive
changes in the system at the level of the upper airways.
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Fig. 5.  Respiratory flow TP, RRVTP  extracted for flow,
approximate (ApEn) and sample entropy (SampEn) during

simulations of healthy conditions.
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Fig. 6.  Respiratory flow TP, RRVTP for flow, approximate (ApEn)
and sample entropy (SampEn) during simulations of obstructive

sleep apnoea.
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Fig. 7.  Oxygen saturation (SaO2) and approximate (ApEn) and
sample entropy (SampEn) calculated during simulations of healthy

conditions.
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Fig. 8.  Oxygen saturation (SaO2) and approximate (ApEn) and
sample entropy (SampEn) calculated during simulations of

obstructive sleep apnoea.

There has been proposed the procedure of entropy
calculations with the option of moving window. In all cases
of analysed signals the input functional parameters for
ApEn(m, r, N) and SampEn(m, r, N) were fixed as: m = 2, r
= 0.18⋅SD, N = 1000, but there were assumed individual
values of window moving steps by k samples. Fig. 5 and
Fig. 6 depicts the different behaviour of the respiratory
system with fluctuation and complexity encoded in
simulated signals of the respiratory flow (TP). Regularity in
amplitude and length of respiration, projected in the time
series of raw TP data and its transformation RRVTP –
characteristic for healthy sleeping subject – was quantified
by prepared algorithms for k=1000 and k = 100,
respectively. The same conditions were applied to the trends
(TP and RRVTP) simulated in PNEUMA for regime of
obstructive sleep apnoea syndrome. Both, ApEn and
SampEn were sensitive for variety of data ordering, proving
their usefulness for detection and classification of sleep
episodes. Regular in amplitude TP and almost steady
frequency of respiration (RRVTP) – when healthy – produces
small and almost constant entropy measures, whereas



distinct, artifact-like disturbances in respiration find
reflection in similar modulation of the ApEn and SampEn
values (Fig. 6). These observations apply to the trends from
Fig. 7 and Fig. 8. In these circumstances arises the question
about potential of explored entropy measures to detection of
the respiratory temporal disruptions in conditions of mixed
composition of time series, i.e. when there are deterministic,
periodic, random correlated, random uncorrelated
components in data set. It determines the future directions of
research in the undertaken domain.

Next, the physiological trends (acquired in 21 subjects:
healthy, with the symptoms of central and obstructive
apnoea) of respiration were processed for the fixed values of
m = 2, r equal to 0.18⋅SD of the signal and N = 1000.
Example plots for the chosen, normal subject and the patient
with obstructive sleep apnoea were shown in Fig. 9 and Fig.
10, respectively.
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Fig. 9. ApEn and SampEn for TP and RRVTP time series recorded in
normal subject.
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Fig. 10. ApEn and SampEn for TP and RRVTP time series recorded
in patient with obstructive sleep apnoea syndromes.

They show general tendencies observed with a model
(window coefficient k was set the same as for the synthetic
data). It is noticeable rising in entropy measures when the
data ordering is disrupted. Interestingly, when a patient
showed important pathological symptoms the sensitivity of
SampEn on detection of respiratory rate changes against
ApEn was grown (Fig. 10).

Selective studies with the set of accessible data showed
also some level of synchronisation between the processes
(Fig. 11 – Fig. 12), related in literature as interconnected. In
that case, the algorithmic solution with moving window (k =
500) can be direct alternative for entropy measures and long
trends with essential local dynamics.
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Fig. 11. Synchronisation between SaO2 and EKG signal;
ApEn and SampEn calculated for EKG time-series.
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 Fig. 12. Synchronisation between SaO2 and EMG signal; ApEn
and SampEn calculated for EMG time-series.

Awakening in about 580 s was preceded by more disordered
work of heart – higher entropy for EKG trend, whereas after
that point time series became more regular; in this case
SampEn is again more predictive coefficient than ApEn. It
should be also highlighted here, that procedures dedicated to
qualitative and quantitative description of character and
level of such coupling can be important tool in forecasting
and interpretation of sleep episodes.

4.  CONCLUSIONS

Topically, the paper represents the research area
connected with description of objects and signals in the
systematics of non-linear dynamics. Ambulatory attractive
tools of approximate and sample entropy were verified on
example of physiological signals which accompany the
processes of apnoea during sleep. Tests were preceded by
computer analysis of the ApEn and SampEn properties,



which made it possible to calibrate unambiguously the
conditions for the regularity and complexity measurements.
It were shown, as a contrast between health subject and
patients with SAS, the selective properties of the
investigated theoretical tools in quantitative description of
the complex processes with different levels of variability.

From the diagnostic strategies points of view (prediction
and/or control), it can be valuable to organise broaden
studies which could provide fusion of information derived in
various techniques. Application of ApEn or SampEn with
moving window of length N can bring in valuable
information, especially in those sections of the trends where
important abnormalities take place, e.g. in the moments of
occurrences of Cheyne-Stokes’ flow disruptions.

Early stage of investigations, presented by the authors in
the paper, will be continued in the direction of mathematical
modelling of the complex physiological system. Together
with the real experiment, it will enable to test the hypothesis
on the object (e.g. on obstructive and central character of
SAS), qualitatively and quantitatively measure its properties
and depict the processes by the novel techniques of data
processing.

From the undertaken object point of view, the issues of
time-scaling in properties and behaviour can be an influent
components during the future work. The perspective
direction can be also description of the cross-correlations
between various signals, where approximate entropy and
sample entropy seem to be attractive tools, as they offer
such variants of analysis – Cross-ApEn and Cross-SampEn
[17].

The main problems and developmental tools for future
studies are as follows:
• forecasting, detection and classification (central,

obstructive, mixed) of sleep apnoea character,
• advancement of work with the complex model of the

system (improvement of description of the respiratory
mechanics is planned in the near future),

• inclusion of the other theoretical tools of data analysis
(e.g. DFA algorithms, measures typical for description
of deterministic chaos – Lyapunov exponent, capacity
dimension, correlation dimension, recurrence and cross-
recurrence plots, others),

• objectivation of functional input parameters for the used
measures of complexity and regularity of data set.
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