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Abstract — Many studies have been developed aiming
to improve digital filters realizations, recurritg intricate
structures and analysing the error’s behaviour. Wbk
presented in this paper analyses the feasibilityixefd-
point implementation of classical IIR notch filters
(Butterworth, Chebyshev, Bessel and elliptic), aiso
the effect of the quality factor and normalized -ofit
frequency in the number of significant bits necessa
represent the coefficients, to scrutinize the dufiiions
the filters suffer for distinct design specificatso

The work focuses especially in the implementatiébn o
power line notch filters used to improve the sigtal
noise ratio in biomedical signals. The obtainedultes
when quantizing the digital notch filters, show tthey
applying second order sections decomposition, lodeo
digital filters may be designed using only partdofuble
precision capabilities, while high-order notchdfil with
harsh design constrains are implementable usindpldou
precision, but only in second-order sections. Thuss
shown that to optimize computation time in realdim
applications, an optimal digital notch filter
implementation platform should have variable arigic
precision.

Keywords:. digital filter implementation, digital filter
word length effects, notch digital filters.

1. INTRODUCTION

Notch filters are very important in a wide varieif
instrumentation applications, from telecommunicagid®o
biomedical signals processing, where often it isessary
to remove a narrow band or even a single frequenhtye
measurement signal. Digital implementation of these
filters is preferable to an analog implementatiare do
drift absence and straightforward design of higingality
factors. Nevertheless, digital filters’ implemeiaat has
accuracy limitations due to the arithmetic’'s finite
precision [1-4], an issue that is much more sigaiit in
fixed-point arithmetic than in floating-point.

Due to the ease of designing and calculating the
coefficients of high-performance digital IIR filgr the
filter outcome is taken for granted, but, particlylaif
dealing with limited capacity fixed-point platfornfsuch
as microcontrollers, digital signal processors, diattl-
programmable gate arrays) or with very demanding
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design constraints, the filtering stage may have a
pernicious effect on the signal, completely missitg
purpose.

This problem has been studied [2-9] and, disregardi
additional error sources originated from the A/ &1A
conversions, the key issues are:

I. Quantization of the input signal into a finite set
of discrete levels;
II. Representation of the filter's coefficients by a
short number of bits;
lll. Propagation of rounding errors occurred in
arithmetic operations.

To evaluate these errors influence in the finakfil
output, several approaches have been proposed?2-9,
14]. If errors type-l are assumed to be randomatées
with a uniform probability distribution, a numberf o
analysis tools is available to characterize theingviour
[10-14]. Errors type-lll are incessantly subject of
reductions through the implementation of novel ctite
variations [1-2,5,15-17] based in state-space &iras
and direct form | with error feedback, also knovemaise
shaping or error spectrum shaping [5,9,18].

Type-Il errors also have comprehensive bibliography
reporting studies on important implementation issue
some instability thresholds due to these errorsewer
derived [6,19], not including notch filters, coefénts
sensitivity approach [15,18-20], and structuralrnges to
minimize the impact of these errors [2,5,8,17].

Considering specifically biomedical applications,
some studies have analysed the digital filtersodisin
effect on the signal [15], but the feasibility arnke
outcome of the implementation has not been discusse
Moreover, several biomedical studies ignore, to esom
extent, the higher-frequency components of the adggn
implementing low-pass filters, or wide band-stolpefs.
Ballistocardiogram, electrocardiogram, electrormagiram,
which have sampling frequencies from 200 Hz to 2,kH
and other biomedical signals high-resolution preires
systems benefit from the usage of power line nélighs.

Since acquisition systems work at distinct sampling
rates, the analysis of digital notch filters penfiance at
different normalized cut-off frequencies allows @tiisg
that most biomedical signals fit in the tested grand so
the conclusions are applicable to a broad variétigital
biomedical signal processing systems. Subsequently,
MATLAB processing capabilities are used to evaluate



fixed-point arithmetic numerical accuracy requirerseto
realize several types of IIR notch filters, at ei#nt
design specifications.

2. SECOND ORDER FILTERS

Using dedicated filter design software, floatingrto
double precision coefficients were computed for the
following filter types: Butterworth, Chebyshev typkand
II, and Elliptic. It was considered a normalizedtaio
frequency vectof2y with 9 points per decade spaced from
10“ to 0.3 (totalling 30 points) and a quality fact@ctor
Q also with 9 points per decade spaced from 1 tb 10
(totalling 37 points) and filters of even ordersrfr second
to tenth were designed.

In view of the fact that the quantization inducesep
movement, a stable filter after quantization magdoee
unstable or even if the quantized filter is confdrto be
stable, its outcome may be unacceptable, thusigttiat
although the poles remain in the interior of thé aincle,
the quantization is too coarse and the poles amdsze
movement deforms the filter behaviour.

To diminish the poles and zeros wandering one
valuable method is the implementation of the filter
second order sections (decomposing &holder filter in
the product of N/2 second order filters), considgrihat
the coefficients’ quantization causes minor pole
movement than in higher order sections. The impmdct
this option will also be evaluated.

2.1. Filters’ definitions

The normalized frequencg is defined as the ratio
between the frequency and the Nyquist rate, theidtieg
in units of cycles per sample.

The quality factorQ is the ratio betweer, and the
bandwidth (difference between upper and lower ¢ft-o
frequencies2; andQ,), while the notch frequenag,, the
centre of the stop band, is the geometric mea®,cdnd
0,. Since results should be parameterized as fursctién
0y andQ and filter design algorithms proce€s and .,
(1) was used to obtainQ; and Q, from design
specifications 2, andQ.

Qlr. s
Q, =yQQ, 92:?5(1+ 1+ LQZ)
- % 2 (1)
°7q,-a Q=%
2 1 QZ

The filters were implemented using Direct-Form I,
see Fig. 1, of the filter's transfer function H(z),
represented in (2) for the second order case.

_Y(d _R+hZ+bp?Z
H(Z)_X(z)_1+qz‘1+ 37 )

Stability assessment was made searching for pdles o
the filter's transfer functionH(z), outside the unit circle.
The n bit fixed-point filter's deviations to the floatn
point double precision format design (16 decimgitdiof
precision in calculations, IEEE decimal64 forma2i]

was measured making use of it's frequency response
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magnitude,|H, pi(jQ)|, root mean square errafp; (in
dB), using (3),

max

Enbit =\/ Z DHnbit(jQ)‘dB _‘H roat(jQ)‘dB:| (3)

Q:Qmm

where Q is the test-frequency vectokl, pi(j2) and
Hsoar(j©) the transfer functions of both filters.

L ¥(m)

x(n)

Fig. 1.Implementation of (2) in Direct-Form Il.

It should be noticed that, ,;; could have been defined
in linear units or using the phase or group delay
difference, but since the magnitude in dB is thesimo
widely employed method to assess filter responise, t
parametere, iy was chosen to measure directly this
dissimilarity in dB. Filter deviations are probleticaboth
in pass and in stop band, since deviations startanifest
in the stop band and afterwards spread to the Ipasd
also, the metric (3) equally weights all frequencie

3. SECOND ORDER FILTERSRESULTSAND
DICUSSION

3.1. Filters’ stability

Second order band-stop filters of the stated typa®
implemented using the defing@d and Q, vectors. It was
found that, for every filter type, only the 16 bit
implementation was stable for afp,(,) pairs and that the
minimum quality factor to design an unstable fil@f-™"
is 40, in the normalized notch frequenagy-™" was
found 8x10’.

The Q.20 pairs that generate unstable filters vary
their position according to the number of bits bt
implementation but not with the filter type.

(Q.ag) pairs which generate unstable filters

Fig. 2.Number ofsecond-order unstable filters for edhQo)
pair, in a total of 28 designed p&,2,) pair.



Fig. 2 shows the number of unstable filters obt@ine
for each Q,Q) pair (total of 1110), considering 10 to 16
bits implementations of the four filter types (28sayned
per pair).

Regarding power line notch filters implementation i
biomedical systems, the range of the normalizedthot
frequencies where the filter is unstable represemts
important drawback because implementations with
sampling rates from 2 kHz down to 200 Hz will craolss
two main instability peaks found in Fig. 2. Despheés, if
quality factors bellow 40 are tolerable, the impégrtation
of 10 to 16 bit fixed-point IIR notch filters
straightforward.

is

3.2. Filters’ deviations

Second order band-stop filters of the stated typa®
implemented using the defined, and Q vectors. The
results obtained foe, i in a second-order Butterworth
filter, at a fixedQ, of 0.05, thus situated in the more
disturbing zone, witim from 10 to 16 bits, and variablg
are presented in Fig. 3.

2" order Butterworth filter e
n bits
250 —
200

150 —

Number of bits

Quality factor 10

Fig. 3.Second-order Butterworth filtef, i, with Qg of 0.05,n
from 10 to 16 bits, and 37 poingsvector.

Smaller values of the quality factor, namely 1, ée
the higher differences, which is due to the facit tthe
floating-point filter fixed-point implementation eates a
deeper notch than the small deviation due to tkedfi
point conversion is able to mimic truthfully. @ is above
400, the filters have very small notch frequen
attenuation and a small amplitude resonance petikibo
fixed and floating-point implementations. For Q wed
above 1000 this peak vanishes and the filter actnaall
pass filter, having no discrepancy from fixed toating
point. To exemplify this behaviour in Fig. 4 it idotted
the magnitude of the 15 bit Butterworth filter frepcy
responseHis vilj2)|qe, for variableQ.

Butterworth filters are presented as examples & th
last two figures, but the other filters have exatte same
characteristics regarding the error and the madaitu
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response progress with the quality factor and #ikrs
also generate resonance peaks at very high qtedityrs.

2"EI arder 15 bit Butterwoarth filter magnitude respanse [dB]

v IdE

2

10
Quality factor
1

1 T [ »
Mormalized frequency 003 0o7 003 009

Fig. 4 Magnitude, in dBpf the14 bit 29 order Butterworth
filter, |His bi(12)| g, With Q4 of 0.05 and the define@ vector.

3.3. Filters’ optimization

In these implementations we searched the minimum
coefficient word length that guaranteed stabilibyd ahe
optimal word length, considering the defined accura
metric. The filter demanding wider coefficients’ mdo
lengths to guarantee stability was the elliptitefil and the
Chebyshev type | was the most demanding to minimize
error. The coefficients’ word length dependency@and
Qg in these two cases are shown in Figs. 5 and 6.

2"d order Elliptic filter minimum number of bits

Mormalized notch frequency

Fig. 5 Minimum coefficients word length to implement alda
second-order elliptic filter for the defing@ andQ, vectors.



2mj order Chebyshey type | filter optimum number of bits

Mormalized notch frequency

Fig. 6 Optimal coefficients’ word length to implement alsie
second-order Chebyshev type [ filter for the defilgzdndQ,
vectors minimizing the norm (3).

4. HIGHER ORDER FILTERSRESULTSAND
DICUSSION

Repeating the design procedurd, 4", 8" and 18
order filters were implemented in single sectiond an
second-order sections. The results regarding '§iter
stability and quantization effects are subsequently
presented.

4.1. Filters’ stability

Regarding the filters’ stability, Table 1 presetite
number of stable filters designed for each ordet each
filter type, when using single section (SS) andoseée
order sections (SOS) implementations. The maximum
coefficients’ word length allowed was of 16 bitsdatie
total number of filters for all@,2,) pairs is 1110.

Table 1. Number of stable filters of 46", 8" and 18" order.

Type
Order SS SOS
B|Cl1|C2| E B Ci1 | C2 E
4 134(138|162|133| 1110| 1110, 1110 111p
6 16 | 19| 21| 16/ 1110 111p 1110 1140
8 6 7 6 1110 1110 111p 1110
10 2 3 2 1| 1110 1110 111p 1105

In this table it is visible that for thé"4rder, the single
section implementation is no longer valid, sincl/d? to
14.6% of the filters implemented using this struetare
stable. For even higher orders few designed filters
implementations are characterized by stability.

When decomposing the filter structure into second-
order sections implementation, the rearrangemerthef
coefficients allows the minimization of deviatiofrf®m
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the poles real value in such a way that only fillpte
filters of 10" order are unstable.

Other important result is the minimum and the agera
number of bits required to ensure that the SO8réilare
stable for all Q,©2,). The results are presented in Table 2.

The second-order section filters preserve the
behaviour presented in Fig. 2. Only a few tenthshefm
require more than 10 bits. When increasing the rotioie
requirements of this residual minority also incegalsut
only 10 bits are needed to almost every filter
implementation.

Table 2. Number of bits (average and maximum) &igie
stable filters for allQ,Q,) pairs.

Type
Averagefor all (Q,2) Max for all (Q,)
B C1 Cc2 E B|Cl|C2| E
4 10.109010.126110.091910.1297 14| 14 | 14| 14
10.127(310.155010.124310.1667 14| 14 | 14| 14
8 ]10.136010.172110.146810.200Q 14| 15 | 14| 16
10 [10.150910.182010.159§ -~ |14| 15| 14| >16

Order

2]

4.2. SOS Filters’ deviations

The results of previous section 2.1 indicate the
importance of analyzing not only the glob@l,Q,) mesh
but also the zones with more demanding coefficients
word length to ensure stability. Table 3 summargase
of the measurements made, representing the avdoage,
from 10 to 16 bits, of the root mean square eroothe
floating point implementatior, v, defined in (3), for a
Q, value of 0.05.

Table 3. Average root mean square deviation, infidi®; the
fixed to the floating-point implementation € = 0.05.

Order ij(Q, 23:0-053V[d5] av
€ &c1 €c2 €
4 90 303 39 254
6 111 193 101 189
8 2502 | 2500 1105 1124
10 1829 | 1782 905| 1062

The results obtained fayg, at a fixedQ, of 0.05, thus
situated in the most troubling zone, have theirimimm
in the Chebyshev type Il filter, which has minimum
deviations in every order. Chebyshev type Il dévied to
the floating-point implementation are presente8im 7.

4.3. SOS Filters’ optimization

Table 4 summarizes the coefficients’ word length,
when optimizing this quantity, for eack,,), to ensure
the minimum deviation from the floating-point
implementation. It is displayed the average of the
coefficients’ word length.



4™ order Chebyshev I filter & - 1.

o
10 5
Quality factar 10 410

6" order Chebyshev llfilter . .

SO0+
40047
3004
2004-
100

2 n hitz

0 F-
10 16

A 12 )
g 10 Murnber of hits

10™ order Chebyshev Il filter

n bits

o
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) 2
Murmber of bits Quality factor 10 4" qg MNumber of bits

Fig. 7.Higher order Butterworth SOS filtets vy, With £ of 0.05,n from 10 to 16 bits, and 37 poin@svector.

Table 4. Number of bits to minimize deviations &ir(Q,Qo)
pairs.

Averagefor all (Q,2)
B C1 Cc2 E
4 12.531512.731512.856812.7937
6 [11.836Q12.045911.861312.1514
8 [12.030412.080211.910812.0194
10 |12.180212.236912.147712.3468

Order

Contrary to what one miglat priori expect, it is seen
that the 4 order has the higher average.

The most demanding filter to minimize the error ddir
(Q,Q0) pairs is the % order Chebyshev type Il filter. The
coefficients’ word length dependence @hand Qq in
these cases is shown in Fig. 8.

5. CONCLUSIONS

In the work now reported it was investigated theaf
of the design specifications, namely quality factord
normalized cut-off frequency, in the number of digant
bits necessary to represent the coefficients afigad [IR
notch filter, and also the deformations the filrffers

4‘h order Chebyshey type |l filter optimum number of bits

10 -4 Normalized notch frequency

Fig. 8 Optimal coefficients’ word length to implement atsie
second-order Chebyshev type [ filter for the defilgzdndQ,
vectors minimizing the norm (3).

with these specifications, when implementing itngsi
fixed-point arithmetic, which has much higher aemyr
constrains than the common floating-point
implementation.

One important result of our work is that it is faltben
to increase the filter's order above th¥ & the filter is
implemented in a single section. However, the order
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incre
in se
provi
requi

ase is practically harmless if the filter ecdmposed
cond-order sections. The simulation resultsiobd
de comprehensive understanding of the stgbilit
rements and show a critical area of Q @gdialues

in which filter's stability is compromised, evenrf@"™
order. This critical area is especially problematir

biom

edical signal

values ofQ, are typical of these applications.

The filters’ deviations

in the critical zone were

measured, and were found to increase significamtign
rising above B order.

From the classical families of IR filters, it wagsen
that Chebyshev type Il is the filter family thaffeus less

with

fixed point implementation, and it is also thess

demanding in number of significant bits necessary t
represent the filters’ coefficients.

D

igital notch filter behaviour under fixed-point

implementation was extensively compared with fiogti

point

under simulation environment.  Practical

realizations, however, may bring important conttiitas

to th
done

e study now reported. Thus, future work must b
regarding the implementation of such filtesing

namely Digital Signal Processors (DSPs) and Field

Prog

rammable Gate Array (FPGAS) evaluating therflt

performances and their deviations and discreparices
the above presented simulation results.
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