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Abstract  Nowadays measurement data coming from 

all kinds of measurement systems is usually processed by 

algorithms. These algorithms are often delivered to the user 

as complex program and their numerical structure is not 

known. Therefore also influence of algorithm on an 

accuracy of processed data is not known. Coefficient matrix 

of algorithm represents its numerical operations and it can 

be a basis to algorithm accuracy evaluation. The paper 

presents a method how to identify this coefficient matrix. As 

an example this method is used to identify an FFT algorithm 

implemented in LabVIEW. 

Keywords:  algorithm uncertainty, algorithm matrix 

form, algorithm identification 

1.  INTRODUCTION 

Measurement systems and instruments use many 

different algorithms for calculations on measured quantity 

values. Generally the measurement data processing 

algorithm is a mathematical formula, which converts one 

data sequence into another [1]. Next section presents how 

the algorithm operations can be described in a matrix form. 

Matrix form of algorithm facilitate analysis of its 

metrological properties. Knowledge of algorithm coefficient 

matrix helps in determining how this algorithm transfers 

errors from input to the output. The coefficients of the 

matrix can be calculated using algebraic form of the 

algorithm if it is known. However in many cases algorithms 

are implemented in different software environments and 

their coefficients calculations are not overt. The paper 

describes an identification method of these coefficients, and 

the algorithm can be described just as a black box with 

inputs and outputs. This method enables quick, current 

calculations of algorithm coefficients in particular 

measurement situation and subsequently using this 

coefficients to calculate current uncertainty of measurement 

values.  

2.  MATRIX FORM OF ALGORITHM 

Generally it can be assumed that the algorithm converts 

quantity )(tx , continuous in t domain, to another quantity 

)(X , continuous in   domain [2].  

In practice algorithm operates on series of discrete 

samples of input quantity. The output values of algorithm 

have also discrete form. Number of samples the algorithm 

operates on is limited (input window). Also output quantity 

has limited representation (output window). Considerations 

in the paper are limited to rectangular input window. It 

means that algorithm input data consist of input quantity 

samples )1(,),1(),0( Kxxx  , where K means the number 

of input window samples. On the output of the algorithm 

one gets N element algorithm output data series 

   )1(,),1(),0(:)(  NXXXnX   which can be 

interpreted as the discrete representation of algorithm output 

value X, continuous in   domain 

In the situation presented one can describe algorithm 

data processing as a matrix equation [1][3] 
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where 1,11,0,0,0 ,,  KNK aaa  are the algorithm coefficients. 

Algorithm input and output data series are presented in (1) 

as vectors. When one denotes this vectors respectively as x 

and X, the data processing algorithm represented by 

equation (1) can be written as 

 xAX  .  (2)  

Complex output data. 

Output data of some algorithms, for example DFT, are 

presented in complex form. In such case data processing can 

be described by two algorithms, where one determines real 

values and the second imaginary ones. Such algorithms can 

be presented as two matrix equations  
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 xAX ReRe  ,  (3)  

 xAX ImIm  .  (4)  

Output data of these algorithms form complex number 

series, which can be presented as vector  

 ImRe XXX j . (5)  

Single and multipoint algorithms. 

One can indicate a group of algorithms which produce a 

single output value – for example filtration algorithms, 

average or rms calculating algorithms etc. This kind of 

algorithm is called singlepoint algorithm.  

In another case, when one run of algorithm produces a 

set of values, such algorithm is called multipoint algorithm 

[1][3].  

Multipoint algorithm can be presented as a set of parallel 

singlepoint algorithms which operate on the same input 

values series [1]. Every singlepoint algorithm is represented 

by corresponding coefficient vector AAA
1-10 , N  which 

is a single row of coefficient matrix A in (1). Execution of 

every singlepoint algorithm generates one value, which can 

be described for n-th row of coefficient matrix A as  

   TT
1,1,0, )1()1()0()( xA

n
Knnn KxxxaaanX    , 

  (6) 

where  1,1,0,  Knnn
n aaa A  is a coefficient vector of 

singlepoint algorithm represented by n-th row of matrix A, 

1,1,0, Knnn aaa   are constant coefficients of singlepoint 

algorithm,  TT )1()1()0(  Kxxx x  is the algorithm 

input values vector. 

Dependence (6) can be also written in other form  


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.  (7)  

Dependence (7) is a general singlepoint algorithm 

processing equation, which form the base for further 

metrological analysis, where it is assumed, that multipoint 

algorithm is considered as set of independent singlepoint 

algorithms [1]. It means that output data from multipoint 

algorithm is considered as a set of independent numbers.   

Considering multipoint algorithm as a set of singlepoint 

ones considerably simplifies its metrological analysis with 

no influence on the generality of considerations. That is 

because usually analysis of singlepoint algorithm gives 

information about structure and many properties of the 

whole multipoint algorithm [1][3].  

In further considerations it is assumed, that algorithm 

input values form a series of instantaneous measurement 

results of changing in time quantity. Moreover it is assumed 

that algorithm coefficients values are constant and 

independent from both input values series  )(kx  and output 

values series  )(nX . 

3.  IDENTYFICATION OF ALGORITHM 

COEFFICIENTS 

As mentioned in introduction, to determine metrological 

properties of algorithm one needs to identify its coefficient 

matrix values. This identification can be achieved by giving 

to the algorithm input appropriate test series. An example of 

coefficient identification method is presented on FFT 

algorithm, which is a transformation algorithm. Specifically 

there is identified FFT implementation in LabVIEW 

environment. 

 
Fig. 1. Icon representing FFT algorithm in LabVIEW.  

 

FFT is a generally known algorithm. It transforms data 

from time domain to frequency domain. General equation of 

discrete Fourier transform has a form: 

 






1

0

/2)()(

N

k

NnkjekxnX 
,for k= 0, 1, ..., N-1. (8)  

In general case this algorithm processes series of N 

complex input values into series of N complex output 

values. 

Considering matrix form of algorithm (1) one can notice 

that if the input vector has form 

   TT
0001)1()1()0(  Nxxx , than output vector 

will have values equal to values of coefficients from the first 

Table 1. Exemplary FFT coefficient matrix A for N=10.  

 
 



column of matrix A. If one shifts ‘1’ in input vector to the 

successive positions one gets successive columns of 

coefficient martix A. Generally test series for  column 

determining has a form: 
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where  = 0, 1, ..., N-1 is a number of test series and  

k = 0, 1, ... , N-1 is a number of term in series.  

Repeating the operation N times one obtains the whole 

coefficient matrix A. Exemplary matrix for N=10 is 

presented in table 1.   

The matrix presented in table 1 is only an example and N 

value is selected for presentation. Values of coefficients for 

another N values can be calculated currently depending on 

measurement situation. Coefficients values depend only on 

the length of the input vector. Presented algorithm 

coefficients identification method enables to build a 

subroutine which calculates coefficients values currently as 

required.  

4.  EXEMPLARY APPLICATION OF IDENTIFIED 

ALGORITHM COEFFICIENTS  

Coefficient of matrix A calculated in section 3 are used 

to determine propagation of uncertainty caused by random 

errors through FFT algorithm. Specific data processing in 

algorithms causes, that it is convenient to consider 

uncertainty as a parameter of error values set, even if this 

error is only theoretical and impossible to determine, but it 

facilitates processing analysis and later transition to 

description by uncertainties [1][4][5]. Knowledge about 

error propagation enables to determine algorithm output 

uncertainty basing on input uncertainties and on input errors 

distribution shapes.  

Therefore algorithm uncertainty model is based on error 

model presented in fig. 2. In this model algorithm transfers 

errors from the input to the output with appropriate 

coefficient and also introduces its own errors. 

A
 x

t

A

X


+
+n

 

Fig. 2. General algorithm error model.  
x

 is an algorithm input 

data error sequence, 
t

  is an error resulting from data errors 

transfer from input to output, 
A

  is an error added by algorithm.  

Errors can be divided into three categories regarding the 

way they are processed by algorithms – static, dynamic and 

random errors [1][4][5][9]. Uncertainty can be considered as 

a measure characterizing error set [1][5][8], therefore also 

uncertainties can be categorized as static, dynamic and 

random. 

This section considers propagation of random errors, it 

means errors which can be considered in probabilistic 

categories. Basing on [1], the dependence between random 

error variances on the input and the output of the algorithm 

is: 

 222
xX A   . (10)  

where A is a square root of the sum of squared singlepoint 

algorithm coefficients 





1

0

2
K

k

kaA . Therefore when data 

contains random errors, uncertainty propagation can be 

calculated basing on appropriate variances.  

When random errors are concerned one meets usually 

one of two situations. First - when quantization errors 

dominate and then input error distribution shape can be 

approximated by uniform distribution [10]. Second one is 

when noise dominates and error distribution shape is 

normal. 

Assuming, that algorithm has more than three 

coefficients and the coefficient values do not differ from 

each other excessively one can assume, that probability 

density function of algorithm output error )( Xg   has 

approximately normal distribution, no matter if input errors 

have normal or uniform distribution. This results from 

central limit theorem [6][7]. Uncertainty with confidence 

level 95,0  calculated using definition [1][8] for normal 

distribution, and presented as multiplicity of standard 

deviation, is [7]:  

   XX  96,1U . (11)  

Taking into consideration expression (10), equation (11) can 

be noted as 

   xAX  96,1U . (12)  

Uncertainty with confidence level 95,0  calculated 

for random error which probability density function is 

uniform is [7]  

   xx  65,1Uq . (13)  

Determining proportion of output uncertainty (12) and 

input uncertainty (13), one obtains coefficient qk  which 

specifies propagation of uncertainty caused by quantization 

error from algorithm input to the output:  
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Therefore coefficient qk  value is directly proportional to 

value A, which is an important parameter of every 

algorithm. Basing on A one can specify quantitatively 

uncertainty propagation through algorithm. 

In case when noise dominates, propagation coefficient 

can be written as 
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Presented considerations show, that when A matrix 

coefficients are identified and the parameters of input 



uncertainty sources are known, then output uncertainty can 

be calculated.   

Example I: Input values of algorithm contain 

quantization error of 12-bit AD converter. Converter input 

voltage range is V1,1IN  U , so quantum value is 

V10883,4
2

)1(1
q 4

12




 . Uncertainty on the input of 

algorithm is   V1032.2V10883.495.0U 44

2

1
q

 x , 

and the standard deviation   V1041,165,1/U 4
qq,

 xx . 

Assuming that AD conversion results are processed by FFT 

algorithm described in section 3 and its input window is 

1024, value Re,1A  for the first row of coefficient matrix A is 

Re,1A = 0,0220971. When quantization error dominates, then 

uncertainty of the first element of the output vector is 

calculated as follows: 

   6
Re,1Req 1009,696,1)1(U  xAX  . (17)  

The same calculations can be made for other algorithm 

output values. 

Example II: Errors in input values of algorithm are 

dominated by gaussian noise. Standard deviation of the 

noise is for example V105 3
,r

x . Input uncertainty is 

then   V108,9V10596,1U 33
r

 x . Uncertainty of the 

first element of FFT output vector is calculated as: 

   4
Re,1Rer 1017,296,1)1(U  xAX  . (18)  

 

Experiments. 

Results (17) and (18) were checked experimentally. 

Experiments can be done in two ways presented on fig. 3.  

Procedure presented on fig. 3a) replicates normal 

functioning of measurement data processing. Standard 

signal is processed by algorithm twice – with added random 

errors having known distribution, and without these errors. 

Difference of output values (in presented examples it is the 
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Fig. 3. Scheme of experimental determination of FFT output first element uncertainty. a) Input values contain random errors. Output values 

are compared with results without random errors. Histogram of their difference is a base for uncertainty evaluation. Algorithm own errors 

are eliminated; b) Pure noise on algorithm input. Output contains both transferred input errors and errors inserted by algorithm 

When algorithm own errors are small, both procedures give the same results.  
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difference between the first elements of the output vectors) 

is an output error. Basing on set of these errors standard 

deviation and uncertainty can be calculated. 

In second procedure presented on fig. 3b) the input 

quantity of FFT is pure noise of desired distribution 

(uniform or normal). Then basing on the output value 

histogram one can determine the standard deviation and 

uncertainty.  

Experiments presented in the paper were made using the 

second procedure (fig. 3b).  Results for errors which have 

uniform distribution and presented earlier parameters (range 
4104415,2  ) are: standard deviation of output quantity 

6
,q 103,11

Re

X  and uncertainty of the first element of 

algorithm output vector   6
Req 10106,)1(U X . Results 

for errors which have normal distribution and standard 

deviation V105 3
,r

x  are: standard deviation of output 

quantity 4
,r 101,11

Re

X  and uncertainty of the first 

element of algorithm output vector 

  4
Req 102,17)1(U X .  

 

Fig. 4. The error histogram of real part of output FFT vector first 

element (window of 1024 samples). In the input data uniformly 

distributed errors dominate. Errors are in range 4104415,2  .  

 

Fig. 5. The error histogram of real part of output FFT vector first 

element (window of 1024 samples). In the input data errors having 

normal distribution dominate. Standard deviation is 

V105 3
,r

x .  

5.  CONCLUSIONS 

The paper presents the identification method of data 

processing algorithm coefficient matrix. This method 

enables easy determination of matrix coefficients, even 

when algorithm structure is not known. Knowledge about 

the length of input and output vector is sufficient. Presented 

method can be implemented as a subroutine which 

automatically calculates current values of coefficient matrix 

A depending on changing operating conditions.  

Basing on determined matrix coefficients one can 

determine propagation of errors of different kinds through 

the algorithm. Further analysis determines also uncertainty 

propagation through algorithm. Nowadays measurement 

data processing algorithms are generally used, therefore 

analysis of uncertainty propagation through algorithms is 

important, although often omitted. When algorithms 

influence in error budget and in uncertainty budget is 

omitted, it can cause false estimation of measurement 

accuracy, as different kinds of errors and uncertainties can 

be considerably amplified or attenuated. Presented in the 

paper algorithm coefficients identification method can 

considerably facilitate uncertainty determining process and 

the error estimation.  
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