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Abstract − The main purpose of this work is to propose 

a dynamical model for simulating the response of different 
metallic objects when impacted by another rigid body. In 
addition, a methodology for estimating the model 
parameters is presented and discussed. Results from real 
experiments shows that by assuming certain characteristics 
on impacting objects, the dynamic model can reproduce the 
transient dynamics during contact time. 
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1.  INTRODUCTION 

There are different works among literature that consider 
the study of collisions between bodies and propose different 
kind of models for analysing impacts [1-8]. Most of these 
investigations concentrate on estimating the post-impact 
conditions of the objects, or monitoring composite materials, 
rather than analyzing the behaviour of objects during the 
impact period. Breckenridge [1] presents an experimental 
study of different transient sources and their characteristic 
responses. Wildes [2] propose a dynamical model to study 
the characteristics of materials by “hearing” the sound 
produced by an impact, but does not consider the initial 
transient, and concentrates only on the steady state response. 
On [3], an interesting study on the dynamics of a one-
degree-of-freedom system subjected to an impact is 
presented, focused from the point of view of control, for 
compensating the forces released during collision. In 
another kind of works, [4]-[5] present a different approach, 
they use collisions for evaluating the “health-state” of 
composite materials based on the “coin-tap” test method. 
[6]-[7] are interesting references for modelling and studying 
the effects of impacts on structures. 

The motivation for developing this work arise from a 
previous investigation [9] where the authors presented the 
design of an inverse filter based on Neural Networks and a 
transient excitations. On that work, a model of impacts 
dynamics was required for training the network, and its 
improvement was left as a future development. 

In this paper, we propose a mechanical model that 
describes the dynamics of two rigid objects during a 
collision. On Section 2, we begin by describing the model, 
proposing a methodology for measuring the parameters, and 
explaining the characteristics of the impacting device that 

has been used for the experiments. On Section 3, we provide 
details of the experimental setup, and on final sections we 
present results and conclusions. 

2.  MODEL DESCRIPTION AND METHODOLOGY 

The mechanical model we are proposing describes the 
collision between two rigid bodies, as shown in Fig. 1, 
where object 1 is a sensorised hammer that acts as the 
“impactor”, and object 2 is the “sample” that receives the 
impact, which for experimental purposes consist on a set of 
cylinders of different sizes and materials.  

During impact, there is a small period of time, τP, where 
both objects are in contact and some amount of energy 
transfers from one body to the other. Modeling the dynamics 
of the “sample” during this period is not easy, mainly 
because the collision depends largely on three factors: the 
geometrical characteristics of the objects; the type of impact 
(direct impact, lateral, etc); and the velocities involved 
during the collision [3]. In order to simplify the statement of 
the model and equations, some assumptions are considered: 
• Collisions are between very hard materials that have 

regular geometries, as cylinders. 
• Objects will have a quasistatic behavior during impact: 

this means that all stress releases instantaneously to 
both objects. 

• Velocities and forces during impact are low enough 
that they will produce an elastic impact: plastic 
deformations are negligible and kinetic energy is 
conserved. 

• The impact develops in line with the center of mass of 
each body, and the movement of each object can be 
described by the displacement of their centre of mass. 

These assumptions permit considering each object as a 
spring-mass-damper system, as shown in Fig. 2, where it is 
also possible to observe that only during impact both objects 
are in contact and act as a second-order spring-mass-damper 
system, while prior and after impact they behave as 
individual first-order single-degree-of-freedom systems. 
Equations (1) and (2) describe this process, where the first 
one illustrate the collision during contact time, τP, and the 
second specify the dynamics of the system once objects are 
no longer in contact. Initial conditions at t = 0, (3), consider 
that object 2 is at rest, while object 1 swings an angle Δθ, 
during a time Δt, where, ω is the average angular-velocity of 



the impactor, and L is the length of the supporting holder, as 
shown in Fig. 1. 

 

 

pt
xkxcxxkxxctFxm

xxkxxcxm
τ≤≤

⎭
⎬
⎫

−−−+−+−=
−−−−=

0
)()()(

)()(

222221121122

21121111

&&&&&

&&&&  (1) 

 pt
xkxcxm

xkxcxm
τ>

⎭
⎬
⎫

−−=
−−=

222222

111111

&&&

&&&  (2) 

 0
0,0

0

22

11 =
⎭
⎬
⎫

==
==

t
vx

Lv,x

ii

ii ω  (3) 

Parameters, c1,2, and, k1,2, are the damping and stiffness 
of each body respectively, and are materials constants that 
depend directly on the type of material and geometrical 
properties of the impactor and the sample [7], while m1,2 are 
the masses of each body. 

An important variable in (1) is the impacting force, F(t). 
Because impacts are transients that release a large amount of 
energy in a short period of time, this force is modeled as a 
single pulse of very short duration, that last only the time 
that both objects are in contact, τP. The duration and the 
shape of this pulse depends on the type of deformations 
produced by the collision, which are strongly relate to the 
speed and force level during impact, the type of materials 

(soft, hard), the geometry of bodies, and the location of the 
impact [8]. In order to describe the force F(t), the impact has 
been divided in two parts, being the first the compression 
stage and the second the restitution stage; each having a 
characteristic shape that depends on how materials react 
during impact. In the case of an elastic collision, materials 
respond as linear springs, compressing and recovering their 
initial shape without deformations, with a symmetric pulse, 
similar to a versed-sine pulse [7], as in (4). 
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The period τP is defined in (5), where meq and keq are the 
relative mass [3] (6a), and relative stiffness [7] (6b), of the 
second-order system. 
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2.1 Proposed methodology for measuring model 
parameters 

In order to calculate the parameters of the model 
proposed in (1) and (2), and to compare it with real data, the 
impacting device shown in Fig.1 was built and tested using 
12 cylindrical samples of different materials and 
dimensions. The device consists on a sensorized impact 
hammer placed as a pendulum and embraced in a way that 
movement is possible only in one direction. The hammer is 
the “impactor”, and the end that gets in contact with the 
samples has an aluminium tip located inline with the center 
of mass of the hammer and the samples. The hammer starts 
its swing from an angle Δθ from the vertical; to assure that 
the angle and the impacting velocities are constant on all the 
experiments, an electromagnetic holder supports the 
hammer on a fixed position, as shown in Fig. 1. Samples are 
located over hard foam, in a position that allows a direct 
impact to one of the flat surfaces of the cylindrical samples. 
To measure the response of the samples, another sensor, a 
piezoelectric accelerometer, is attached at the centre of the 
other flat surface, inline with the impact. 

A. Measuring the pulse-duration: τP 
From the point of view of an elastic collision and from 

(5), it is clear that the pulse-duration is a parameter related 
to the mass and the stiffness of the impacting bodies. This 
means that for every collision, between the impactor and 
each cylindrical sample, there will be a pulse of a particular 
length. In order to measure these pulses, 12 experiments are 
carried out (one for every sample): each sample is impacted 
a certain number of times with the hammer, and then the 
hammer and samples mean time-responses are calculated. 

The measurement of the pulse-duration, τP, can be a 
difficult task because it is not easy to locate the actual 
starting and ending points on these types of pulses. As an 
alternative, it is convenient to use the hammers’ response as 
the reference signal, due its resemblance to a versed-sine 
like in (4), and to measure its average pulse-width, τav, by 
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Fig. 1. Impacting device. 

Fig. 2. Mechanical model of impact process. 
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simply measuring the pulse width at the half-amplitude of 
the mean time-response, and then calculate τP applying: τP = 
2 τav [7]. 

B. Measuring stiffness k1 and k2 
The next step is to calculate the parameter k1 (hammer’s 

stiffness) by means of a “control” experiment. This requires 
that both bodies, the impactor and the sample, have similar 
characteristics: as to be made from the same material and to 
have similar dimensions and masses, mHammer ≈ mSample. 
Considering this, we can assume that both objects have 
similar stiffness, k = k1 ≈ k2, and from (6b) it is easy to 
observe that in this case, k = 2 keq. Once k1 has been 
determinated, the value of k2 for each cylinder is calculated 
applying (5) and (6a-b).  

C. Measuring damping constants c1 and c2 
The damping is a parameter that has a larger effect on 

the system response once the impact excitation has finished 
and the system enters in a steady state. It is related to the 
amplitude decay of the oscillating response of the system. 
Its measurement is not always easy, particularly when 
damping ratio is equal or larger than 1, ξ ≥ 1. For cases 
where the system is under-damped, ξ ≤ 1, the ratio ξ can be 
estimated by measuring the exponential decay of the 
impulse response of the system, using (7a) and (7b), where 
Un and Un+1 are consecutive peak values of the oscillating 
signal. 
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We propose to measure the exponential decay, Δ, using 
U1 as the maximum peak-acceleration produced by the 
impact, and use U2 as the next peak found in the steady state 
oscillation. The relation between ξ and c is described in (8), 
where k and m are the particular parameters for each sample. 

3. EXPERIMENTAL SET-UP 

The 12 samples used for testing the model are cylinders 
made from four different materials: aluminium, steel, 

bronze, and brass; in three sizes: all cylinders have a 
diameter of, dc = 30 mm, and the three lengths are: L1 = 10 
mm, L2 = 30 mm, and L3 = 50 mm, designated as the small, 
medium and large samples, respectively. Table 1, shows the 
mass value of all samples. Each cylinder has in one of their 
flat surfaces a small holder for supporting a piezoelectric 
accelerometer (8309 from Brüel & Kjær) for recording the 
impacting time-response. Also, the impacting hammer 
(8206-002 from Brüel & Kjær) has an internal 
accelerometer that is used for measuring its time-response. 
Signals from both sensors were conditioned and then 
acquired with a 12-bit, National Instruments NI-PCI-6115, 
digitizer board. The sampling rate has been set to 2.5 MHz, 
and the recording time to 2 ms. Signals were filtered at 50 
kHz, digitally, to reduce noise and high frequency 
components.  

For the experiments, each sample was located in 
horizontal position on hard foam, as shown in Fig. 1. Using 
the electromagnetic holder for the hammer, each swing was 
reproduced under similar conditions. The hammer swings an 
angle of Δθ = 3.7°, in, Δt =207 ms, which gives an angular 
velocity of ω=0.31 Rad/s. The length of the hammer, from 
the centre of mass to the supporting holder, is L = 265 mm, 
which leads to a linear velocity of v1i = 8.19 cm/s. This 
speed is constant for all impacts. 

 

Table 1. 

  
Samples weight in [gr]  
Without accelerometer* 

Material Small Medium Large 
Aluminium 21.31 61.62 102.38 

Steel 56.32 166.91 277.10 
Bronze 70.48 209.53 348.13 
Brass 60.86 180.14 299.60 

Hammer effective seismic mass: m1 = 100 gr 
*Accelerometer (8309) mass: 3 gr 
 

Fig. 3.  Pulse-width Vs Relative mass. 

Fig. 4.  Maximum amplitude Vs Pulse-width. Average values. 
Samples sizes: small (squares), medium (triangles), large 

(stars). 



 
The model described in (1) and (2), and all the equations 

used for calculating the parameters, were implemented using 
MATLAB. 

 

To measure the hammer stiffness k1, the large aluminium 
cylinder has been selected as the reference sample for the 
control experiment. From Table 1, it is possible to observe 
that both masses are similar, mHammer ≈ mL-alum; and that 
hammer’s tip and cylinder are made from the same type of 
material (aluminium), and both have similar dimensions.  

4. RESULTS 

Model parameters were estimated following the 
procedure described in Section 2 and 3. For every sample, 
10 impacts were produced and average time-responses were 
calculated for the hammer and the cylinders. At the end of 
the experiments, a group of 24 mean time-responses are 
available for analysis (12 from the hammer, and 12 from the 
cylindrical samples).  

For measuring the pulse-duration, the average signals of 
the hammer were used, and results are shown in Table 2. As 
it can be observed, there is a relationship between the pulse-
width and the mass of the samples. For every material, small 
samples have the shortest pulse-duration. This relation can 
be appreciated as well in Fig. 3, which shows the plot 
“pulse-width Vs relative-mass”, where impacts from all 
experiments are shown. It is possible to appreciate the 
variability of the pulse-width among different experiments 
considering individual samples. Also, it is clear that there is 
a relationship among pulse-duration, type of material and 
the relative mass.  

Table 2. 

  Samples pulse-duration, τP [μS]  
Material Small Medium Large 

Aluminium 144.80 196.80 212.00 
Steel 170.00 203.20 219.20 

Bronze 188.00 226.40 239.20 
Brass 189.00 288.10 244.00 

 
Table 3 shows hammer and samples stiffness parameter 

values. Here, it is also possible to appreciate that stiffness 
changes according to the size of the samples. Another 
interesting plot is the “maximum amplitude Vs pulse-
width”, shown in Fig. 4, where average values are shown, 
and again, it is possible to appreciate the relation between 
the acceleration level, the mass of the samples and the pulse-
width. 

Table 3. 

   Samples Stiffness k2, [MN/m]  
Material Small Medium Large 

Aluminium 15.56 17.99 22.54 
Steel 29.18 45.29 46.11 

Bronze 24.89 31.26 33.22 
Brass 20.71 26.99 27.87 

Hammer stiffness: k1 = 22.54 [MN/m]  
 
Table 4 shows the values of the damping constants, and 

hammer estimated damping value. These were obtained 
using the logarithmic decay method assuming that all 
sample have and under-damped response.  

Fig. 5 shows a comparison between the model simulated 
response and some real responses. For clarity, only three 
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Fig. 6.  Mean Square Error (MSE) between model and real data: 
a) for hammer response, b) for cylinders responses. 

Fig. 5.  Model and real cylinders responses. 



cases are shown, those corresponding to the small brass-
cylinder (Top), the medium steel-cylinder (Middle), and the 
large aluminium-cylinder (Bottom). Signals from the model 
and real experiments were normalized and shifted in time 
for comparison purposes. Solid lines correspond to the 
model response and the dashed lines are the real responses.  

Table 4. 

   Samples damping: c2, [N s/m]  
Material Small Medium Large 

Aluminium 206 531 802 
Steel 483 1170 1670 

Bronze 848 2028 2423 
Brass 667 1070 2768 

Hammer: c1 = 1909 [N s/m]  
 
The mean square error (MSE) was calculated to compare 

these results. Fig. 6a show the MSE, in percentage, between 
simulated and real hammer response, for every sample, and 
Fig. 6b shows the MSE between the simulated and the real 
cylinders response. Fig. 6a shows that the proposed versed-
sine pulse describes properly the hammer’s response, where 
the maximum errors correspond to the small samples, 
probably due to asymmetries in the pulse. In all cases, MSE 
< 0.25%, which is a reasonable good result considering that 
the majority have similar MSE. Fig. 6b shows that the errors 
related to cylinders responses are a bit larger, being the 
worst (~ 2.8%) for the large bronze cylinder. All other errors 
are below 2%, which is also a reasonable good result, 
considering as well that the majority have similar MSEs. 

4.  CONCLUSIONS 

This paper proposes a method for modelling the transient 
of an impact between two rigid bodies and for estimating the 
parameters of this model. An experimental impacting device 
has been designed for testing 12 different samples, which 
are cylinders made of aluminium, steel, bronze and brass; in 
three sizes, which allows testing the procedures with 
samples of different characteristics. To produce repeatable 
impacts, a electromagnetic holder was used to release an 
impacting hammer always from the same position. 

Contact time, stiffness and damping parameters of each 
sample were calculated using the proposed method. These 
values were used in the proposed model to generate 
simulated results. The mean square error between the 
simulated responses and the real data shows that the model 
has a reasonably good behaviour during the transient of an 
impact. The MSE is less than 5% for samples simulated 
response, and less than 0.25% for the hammer simulated 
response. 
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