
XIX IMEKO World Congress
Fundamental and Applied Metrology

September 6 11, 2009, Lisbon, Portugal

ADC FUNCTIONAL TESTING USING ARTIFICIAL IMMUNE SYSTEM

Cleonilson Protásio de Souza1, Cláudio Leão Torres2, Raimundo C. S. Freire3, Francisco M. de Assis4

1Federal Institute of Maranhão, São Luı́s, Brazil, protasio@ieee.org
2Federal Institute of Maranhão, São Luı́s, Brazil, cltzv@dee.cefet-ma.br

3Federal University of Campina Grande, Campina Grande, Brazil, rcsfreire@dee.ufcg.edu.br
4Federal University of Campina Grande, Campina Grande, Brazil, fmarcos@dee.ufcg.edu.br

Abstract – Artificial immune systems have been consid-
ered one of the most promising nature-inspired technique
used for novelty detection systems, optimization, identifi-
cation, etc. One of the main tools of these systems is the
Negative-Selection Algorithm that is based on the natural
self-nonself discrimination which has made possible the
body distinguish any foreign cell from the body’s self cell.
In this work, it is used the Negative-Selection Algorithm to
perform functional testing of analog-to-digital converter. In
this way, the evaluation of the converter is performed by
a set of immune-based detectors which can detect faulty
output responses. Using the immune-based detector set,
experimental results have been shown the effectiveness of
the proposed method.

Keywords: ADC, Functional testing, Artificial immune
systems, Negative-Selection Algorithm.

1. INTRODUCTION

Nowadays, digital electronic systems are essential for our
lives. In this context, a fundamental principle arises: the most
the benefits of these systems in our lives, the most is the
possibility of causing damage when they fail [1]. Examples
come from avionics, medicine, etc. In these areas or others
that can cause any damage it is necessary to design high
reliability systems [2]. A circuit that is the most common and
widely used mixed-signal circuits in electronic systems is
the analog-to-digital converter (ADC) [3]. ADCs are widely
used because they serve as interface between analog or
physical world to the digital logic and subsequently digital
processing [4][5]. The importance of ADCs comes from the
fact that the performance of the system is directly affected
by it [6], i.e., no matter if the system is good but the ADC
is faulty. In this way, ADC testing is an important area to
increase the system reliability, since this depends on the
reliability of its components (ADCs, for examples) [7]. Due
to increasing resolution and conversion rates, the challenge
and cost of testing ADCs are growing.

On the other hand, natural systems that may be used as
a model for error detectors are the biological immune ones

which are very complex systems with several mechanisms
for defense against pathogenic organisms. The primary pur-
pose of immune systems is to recognize all cells within the
body and categorize those cells as body’s self cell (self) or
foreign cell (nonself). Such a recognition process is known
as the self-nonself discrimination. After discrimination, the
nonself cells are further categorized in order to induce an
appropriate type of defensive mechanism [8]. With the ability
to detect nonself, immune systems seem to be an adequate
source of inspiration to development of algorithms for early
detection of anomalous behavior in systems [9]. Artificial
systems coming from immune systems are called artificial
immune systems and they are being considered one of the
most promising nature-inspired technique used for novelty
detection systems [10].

In this work, a functional test of ADC, called immune-
ADC, which takes inspiration from the principles of self-
nonself discrimination is presented. Using the proposed
immune-ADC scheme, the evaluation of the ADC Under
Test is performed by a set of pre-computed immune-based
detectors which can detect faulty circuit output response.

Using the set of immune-based detectors, the evaluation
of the ADC Under Test is performed on-line and the ex-
perimental results show the effectiveness of the proposed
scheme.

2. NEGATIVE-SELECTION ALGORITHM

Basically in biological immune systems, the mechanism
for detection of pathogenic organisms consists of lympho-
cytes that can be thought as detectors which can recognize
pathogens and destroy them. This recognition is achieved in
part by T lymphocytes (T cells), which have receptors (anti-
bodies) on their surface that can detect foreign proteins (anti-
gens) on pathogenic organisms. To avoid that such systems
recognize the body’s self cells and only recognize pathogenic
organisms, i.e. to perform self-nonself discrimination, a pro-
cess called negative selection is used. Such process occurs in
the thymus where, during the generation of T cells, receptors
are made by a random genetic rearrangement process which

eliminates T cells that react against self-proteins. In this way,
only T cells that do not bind any self-protein are allowed to
leave the thymus [8]. These matured T cells then circulate
throughout the body to perform immunological functions to
protect against pathogenic organisms.

Based on this self-nonself discrimination, Forrest et
al. [11] proposed a negative-selection algorithm for change
detection. Such an algorithm generates detectors randomly,
and eliminating the ones that detect self, so that the remain-
ing generated detectors can detect (probably) any nonself.
The negative-selection algorithm is summarized as follows:

• Definition of the data to be protected.
In this phase, it is defined as self the data that need to be
protected or monitored. These data can be a collection
R = {R1, R2, · · · , Rn} of l-length strings over a finite
alphabet of cardinality q. Each of these strings is called
self-string.

• Detector generation phase.
Generate candidate detectors randomly and verify if
they match any self-string in R (according to a specified
matching rule, see Section 2.1). If a match is found,
the candidate is rejected. Otherwise, it is accepted as
detector in the detector set D. This process is repeated
until a desired number of detectors have been generated.
The generation phase is illustrated in Figure 1.

• Monitoring phase.
Monitor R for changes by continually matching the
detectors in D against R. If any detector ever matches,
then a change is known to have occurred, because the
detectors are designed not to match any of the original
strings in R. This monitoring phase is illustrated in
Figure 2.

Self Strings
(R)

(D0)

Match

110010
010001

100101
011101

101010
010001
011010
...

...
011010

Reject

YES

NO

Detector Set
(D)

.

010001
101011
...

Random Strings

Fig. 1. Negative-Selection Algorithm: detector generation phase.
Each detector in D fails to match any string in R.

If a change in the protected data was viewed as any
string that does not belong to the original data, then this
algorithm proposes to generate detectors for (almost) all
strings not in the original data and it turns out to be feasible
mathematically, that is, a fairly small set of detector strings
has a very high probability of noticing a random change to
the original data [11]. In addition, it turns out to be robust as
it detects (probabilistically) any foreign activity rather than
looking for specific known patterns of changes [8].

Self Strings
(R)

Detector Set
(D)

Match

110010
010001

100101
011101

011010
...

100101

NonSelf

NO

YES

Detected

Fig. 2. Negative-Selection Algorithm: monitoring Phase. Monitor
R for changes by continually matching the detectors in D against

R.

The generation phase is the most expensive one since
it appears to be computationally difficult to generate valid
detectors, which grows exponentially with the size of self
collection [11]. However, monitoring phase is the cheap-
est [11]. In testing area, such facts are advantageous because
the generation phase is performed in the design stage and
the monitoring phase is performed on-line.
Example: suppose that we have eight 4-bit strings to be
protected, i.e., our self-string collection is given by

R = {0010, 1000, 1001, 0000, 0100, 0010, 1001, 0011}

The generation phase consists in generating random
strings (D0), and then matching the strings of D0 against
the strings in R. Strings from D0 that match a self-string are
rejected. Strings that do not match any self-strings become
members of the detector collection (D).

Suppose that D0 contains the following four random
strings:

0111 1000 0101 1001

Then, D will consist of two strings, 0111 and 0101,
the strings 1000 and 1001 will be rejected because each
of them matches a string in R. In practice, the procedure
is to generate random strings sequentially, and to continue
generating them until D has a sufficient number of elements.

In monitoring phase, with the collection D of detectors,
the state of self can be monitored by continuous matching
strings in R against strings in D. Suppose that one bit of the
last self string (0011) is changed to produce 0111. Then, at
some point in the monitoring phase, it would be noticed that
the nonself string 0111 matches one of the detector strings
(the string 0111), and a change would be reported.

2.1 Matching Rules
In negative-selection algorithm, a criterion of matching

is necessary since a perfect match between two strings of
equal length l means that at each location in the strings,
the symbols are identical. In this case, the matching is
completely specific, so a detector will match only a single
string. So that detectors could match several strings, i.e., to

increase the capability of detecting, a partial-matching rule
is used.

Two partial matching rules are the r-contiguous matching
rule and the r-hamming matching rule. Both the r-contiguous
matching rule and the r-hamming matching rule are con-
trolled by the threshold parameter r. The higher the value
of r, the more specific the match is.

A consequence of using a partial matching rule is that
there is a trade off between the value of r and the number
of necessary detectors to detect nonself strings.

The r-contiguous matching rule was proposed by Forrest
et al. [11]. It consists in looking for r contiguous matches
between symbols in corresponding positions. Suppose that
two strings x and y have symbols from an alphabet of
cardinality q.

An example based on r-contiguous matching rule is shown
in Figure 3.

x: 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 0

y: 0 0 1 0 1 0 1 0 0 1 1 0 1 0 1 1

Fig. 3. A match under the r-contiguous matching rule, with
strings of length l = 16 consisting of symbols from an alphabet
with cardinality m = 2 with the matching constraint r = 5. The
strings x and y in the above example will match for all r ≤ 5.

The r-hamming matching rule is based on Hamming dis-
tance and consists in looking for r matches between symbols
in corresponding positions (not necessary contiguous).

An example based on r-hamming matching rule is shown
in Figure 4.

x: 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 0

y: 0 0 1 0 1 0 1 0 0 1 1 0 1 0 1 1

Fig. 4. Matching under the r-hamming matching rule, with strings
of length l = 16 consisting of symbols from an alphabet with

cardinality m = 2 with the matching constraint r = 9. The
strings x and y in the above example will match for all r ≤ 9.

For r-contiguous matching rule, the probability of two
random strings match in at least r contiguous positions is
given by:

PMc
r
≈ q−r

[
(l − r) (q − 1)

q
+ 1

]
(1)

for q−r ¿ 1 [12].
For r-hamming matching rule, the probability of two

random strings match in at least r positions is given by:

PMh
r

= q−l

(
l∑

i=r

(
l
i

)
(q − 1)l−i

)
(2)

As the probability of one detector does not match a
nonself-string is 1−PMr , and the probability of two detectors
does not match a nonself string is (1 − PMr)

2, and so on,
then, the probability of h detectors fail to detect a nonself
string, i. e., the probability of detection error Pe is given by:

Pe = (1− PMr)
h (3)

3. PROPOSED ADC FUNCTIONAL TESTING

Based on the negative-selection algorithm, this work pro-
posed a functional testing scheme of ADC using an immune
approach. Figure 5 shows the primary scheme comprised of
an ADC Under Test with resolution of n-bits and an ADC
of reference with lower resolution m-bits where m < n. Vi

is a ramp signal that is used for stimulating both ADCs. The
binary responses of the ADCs form the vector

Ṙi = {R1, R2, · · · , Rn−1, Rn, Rn+1, Rn+2, · · · , Rn+m}
where 0 ≤ i ≤ 2n.

ADC
UNDER TEST

n-bit

ADC
REFERENCE UNIT

m-bit

vi

R1

R2

R3

 Rn-1

 Rn

...

...

 Rn+1

 Rn+2

 Rn+m

Fig. 5. Primary scheme of the proposed immune-based ADC
functional testing scheme.

Considering the ADCs are fault-free and applying the
ramp signal, it is obtained 2n digital output vectors Ṙi or

Ṙ = Ṙ1, Ṙ2, · · · , Ṙ2n

.

ADC
UNDER TEST

n-bit

ADC
REFERENCE UNIT

m-bit

vi

Matching

Unit

Detector

Set

Ok/Faulty

n

m

Fig. 6. Complete scheme of the proposed immune-based ADC
functional testing scheme.

Let Ṙ be the the data to be protected using NSA. After
this, it is generated a set of detectors D using the NSA
considering the fault-free ADCs responses as the self-strings.
Using the complete scheme shown in Figure 6 that emulates
the monitoring phase of NSA, it is possible to test ADC
Under test since if any binary response matches a detector,

Table 1. Experimental results (d: number of detectors; c: matching rule; r: parameter; Fi: fault).

Detected (Y = yes, N = No)
d 20 80 320
c r-Hamming r-contiguous r-Hamming r-contiguous r-Hamming r-contiguous
r 13 14 15 13 14 15 13 14 15 13 14 15 13 14 15 13 14 15

F1 Y Y N N N N Y N Y Y N Y Y N Y Y N Y
F2 Y Y N N N N Y Y Y Y N Y Y Y Y Y N Y
F3 Y N N N N N Y Y Y Y N Y Y Y Y Y N Y
F4 Y Y N N N N Y Y N Y Y Y Y Y Y Y Y Y
F5 Y N N N N N Y Y N N N N Y Y Y Y Y Y
F6 Y N N Y N N Y Y N Y N N Y Y Y Y Y Y
F7 Y Y N Y N N Y Y Y Y Y Y Y Y Y Y Y Y
F8 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

which is sequentially generated, then the ADC is considered
faulty. Otherwise it is considered fault-free.

The general procedures for designing the proposed
immune-based ADC functional testing scheme are as fol-
lows.

1) Consider the 2n n + m-bit responses Ṙ =
Ṙ1, Ṙ2, · · · , Ṙ2n

when the ramp signal is applied to
the scheme and consider the ADC fault-free.

2) Consider each fault-free response Ṙi (where Ri ∈
{0, 1}n+m and 1 ≤ i ≤ 2n) as a self-string to be
protected. In this way, the self data are formed by 2n

binary vectors of length n + m.
3) Apply the self-strings in the negative-selection al-

gorithm and generate a set of detectors D =
{D1, D2, · · · , Dh} where h is the number of detectors
obtained.

4) Use the obtained detectors to test the ADC using the
scheme shown in Figure 6.

5) If a detector matches with an output response, then it
is known that the ADC is faulty.

4. EXPERIMENTAL RESULTS

The experimental simulations were implemented assuming
single stuck-at fault model at digital part of ADC under
test. The ADC under test was a 12-bit Ladder one and the
ADC reference unit was a 3-bit flash one. Table 1 shows
the obtained experimental results considering 8 faults (F1

to F8). Row d shows the number of detectores generated
in NSA. Row c shows the matching rule used and row r
the parameter. For instance, in Row F1, the fault F1 was
detected using 20 detectors and considering r-Hamming and
r = 13, but it was not detected using r-contiguous under the
same r. For the remaining faults, Table 1 shows the obtained
results.

It is important to note that all considered faults was
detected using 20 detectors and considering r-Hamming and
r = 13 and that it is not necessary any specific input
stimulus. The ADC testing is really performed on-line.

5. CONCLUSION

In this work was presented the use of Negative-Selection
Algorithm to perform functional testing of analog-to-digital
converter. The ADC evaluation is performed by a set of

immune-based detectors which can detect faulty output re-
sponses. Using the proposed method and based on prelimi-
nary experimental results, it was shown that the proposed
method was able to detect faulty ADCs indicating the
effectiveness of the method.

ACKNOWLEDGMENTS

The authors would like to thank the financial support
provided by the Brazilian National Council for Scientific
and Technological Development (CNPq) and by Maranhão
State Research Supporting Foundation (FAPEMA).

REFERENCES

[1] Avizienis, A. Toward Systematic Design of Fault-Tolerant Systems.
IEEE Transactions on Computer, 30:51–58, Apr 1997.

[2] Ali, L. at al. Challenges and directions for testing IC. Integration,
the VLSI Journal, 37:17–28, February 2004.

[3] International technology roadmap for semiconductors. 2001.
[4] Wen, Y. C. and Lee, K. J. An on Chip ADC test structure. Proceedings

of Design, Automation and Test in Europe (DATE ’00), page 2000.
[5] Walden, R. H. Analog-to-digital converter survey and analysis. IEEE

Journal on Selected Areas in Communications, 17(4):539–550, April
1999.

[6] Serra, A. C.; Alegria, F.; Martins, R. and Fonseca, M. Analog to
digital converters testing - new proposals. Computer Standards &
Interfaces, 26(1):3–13, January 2004.

[7] Jalote, P. Fault Tolerance in Distributed System. Prentice Hall, Inc,
Englewood Cliffs, New Jersey, 1994.

[8] Dasgupta, D., and Attoh-Okine, N. Immunity-based system: a survey.
IEEE International Conference on Computational Cybernetics and
Simulation, pages 369–374, 1997.

[9] Costa Branco, P. J., Dente, J. A., and Vilela Mendes, R. Using
Immunology principles for fault detection. IEEE Transaction on
Industrial Electronics, 30(2):302–375, 2003.

[10] Seredynski, F. and Bouvry, P. Some Issues in Solving the Anomaly
Detection Problem using Immunological Approach. Proceedings on
19th IEEE International Parallel and Distributed Processing Sympo-
sium, pages 188–196, 04-08 April 2005.

[11] Forrest, S. at al. Self-Nonself discrimination in a computer. Pro-
ceedings of IEEE Symp. on Research in Security and Privacy, pages
202–212, May 1994.

[12] Bradley, D.W. and Tyrrell, A.M. Immunotronics - Novel Finite-State-
Machine Architectures with Built-In Self-Test Using Self-Nonself
Differentiation. IEEE Transactions on Evolutionary Computation,
6:227–238, Jun 2002.

	PagNum698: 698
	ISBN698: ISBN 978-963-88410-0-1 © 2009 IMEKO
	PagNum699: 699
	PagNum700: 700
	PagNum701: 701

