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Abstract − The paper reviews and discusses two 

strategies of digital measurements: measurement in a point 
and measurement over an interval. The first strategy, widely 
employed, has represented the backbone in measurement 
evolution and has become a standard method. For high 
accuracy measurements, it presents demanding requirements 
on technology regarding processing of measured signals. 
The second strategy, recently developed, carries clear 
advantages in three challenging areas of measurement 
theory and practice: measurement at high frequencies, 
measurement of noisy signals and measurements that require 
high linearity and high accuracy. These three advantages can 
be combined, as can be seen in the reviewed literature. This 
paper highlights the most important characteristics of the 
two measurement strategies.  
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1.  INTRODUCTION 

Advanced measurement instrumentation is digital 
nowadays. Time-continuous signals are sampled and 
converted into discrete digital variables. In the conversion 
process, accuracy and speed are opposing requirements. 
Accurate measurements of low-level, noisy and distorted 
signals have been a challenging problem in the theory and 
practice of measurement science and technology.  

A possibility for reliable operation of instruments with 
inherent random error has been researched since 1956 [1]. 
An inherent property of such an approach is a very simple 
hardware, which can operate very fast.  It has been shown 
that adding a random uniform dither to an A/D converter 
input decouples measurement error from the input signal [2]. 
This dither also suppresses the measurement error due to 
both coarse A/D conversion and the external additive noise 
in the input signal.  

Following this generic approach, several specific 
methods has been developed for measuring average DC 
inputs, AC inputs and/or distorted AC inputs. Several 
prototype and small-series commercial instruments has been 
realized and their measurement uncertainty can be extremely 
low [3-5].  

Section 2 discusses issues of measurement in a point 
strategy, while section 3 presents the principles of measure-
ment over an interval strategy.  

2.  MEASUREMENT IN A POINT 

Measurement in a point is a separable approach to the 
measurement of the signal values and parameters.  

2.1. Analog to digital conversion  
The term “measurement” today is considered to be a 

discrete digital measurement, i.e. measurement in a point. In 
metrology jargon this is called sampling measurement 
method. The sampling method has two inherent sources of 
systematic measurement error: discretization in time and 
discretization in value. If the sampling theorem conditions 
are satisfied, discretization in time is eliminated as a source 
of measurement error. However, discretization in value 
always causes a systematic measurement error – it cannot be 
eliminated, but only can be, under certain conditions, 
reduced to an acceptable value. 

The essence of the sampling method is as follows: in a 
theoretically infinitely short time interval (practically in an 
instant), a sample of an analogue measured variable is taken 
and in a time interval ∆t this sample is converted into a 
number in a device called A/D converter. This time interval 
is related to a sampling frequency fs , which is related to the 
upper frequency    
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where fg is the highest frequency which appears in the 
measured signal, i.e. the upper limit of the frequency band 
of the measured signal.  

As the aim is to capture fast-changing signals, it is 
important to have the shortest possible interval ∆t. The 
fastest devices are the flash A/D converters, which perform 
the conversion within a single clock cycle and hence achieve 
∆t ˜  1 ns. The problem of flash A/D converters is the 
compromise between the resolution (number of bits) and 
hardware complexity. Resolution of flash A/D converters is 
up to 10 bits and the measurement uncertainty follows this. 
On the other hand, every additional bit of resolution doubles 
the hardware complexity. From that point of view, it is 
desirable to have a lower resolution. However, if the 
resolution is below 7 bits, the Bennett model of quantisation 
error does not apply any more [2]. In such a case the 



quantisation error cannot be treated as a white noise, which 
becomes a serious theoretical and practical problem.  

To sum up this issue, precise and accurate A/D 
converters are slow, while fast A/D converters are imprecise 
and inaccurate. This is the central problem of measurement 
in a point - pronounced inaccuracy at high frequencies.   

The second problem of measurement in a point is the 
treatment of noisy signals. The theory of discrete signals 
does not consider the quantisation error at all, but estimates 
the signal within the noise [6]. It has been shown that the 
signal is better estimated in the noise if the sampling 
frequency is higher. Hence fast A/D converters are crucial in 
this case as well.  

The trend in the progress of measurements in a point is 
the development of fast high-resolution A/D converters. 
This is a big technology aim and task. It is a clear concept 
and a backbone of development not only in measurements, 
but also in telecommunications, control, power electronics 
and other branches of science and technology. The math that 
describes the measurement in a point is the discrete math, 
i.e. the theory of discrete signals and systems. The key 
mathematical tool is the algebra. For measurement of noisy 
signals, the theory of stochastic processes needs to be 
applied as well [6].  

2.2. Processing  
For the progress of measurement in a point strategy, 

development of A/D converters is not enough. The discrete 
values of signals need to be processed in order to obtain 
various signal parameters. The technology component that 
enables the fast and efficient processing of discrete values is 
the digital signal processor (DSP). When developed, the 
DSP was a big technology step for the improvement of 
measurement in a point. To eliminate the accumulation of 
the processing error, DSPs work with high-bit formats in 
floating point arithmetic. The newest commercially 
available Texas Instrument DSP, can achieve processing at 
an excellent 2.1 GFlops (2.1 billion of floating-point 
operations per second).  

2.3. Concluding statement  
The above indicates that methods and hardware are 

becoming standardised in discrete digital measurements, 
while the progress in signal parameter measurements is to 
follow. It seems that there is little to research but a lot to 
apply and standardise the already-discovered knowledge. In 
other words, the methodology progress is exhausted – there 
is only the technology evolution.  

3. MEASUREMENT OVER AN INTERVAL 

Measurement over an interval is an integral approach to 
measure the signal values and parameters.  

3.1. Advantages  
The measurement on a finite time interval can overcome 

some drawbacks and limitations of the measurement in a 
point approach. At the same time, it can preserve almost all 
the advantages of the measurement in a point, especially the 

huge amount of software developed over the years in all 
branches of science and technology.  

The advantages of measurements on an interval are: 
- measurement at high frequencies, 
- measurement of noisy signals, 
- high linearity and low uncertainty of measurement.  
These features often appear simultaneously and can 

provide high-accuracy results in areas where it was not 
possible before [7-9].  

As measurements on an interval represent a complement 
to the measurements in a point, they can be performed by 
low-resolution flash A/D converters. Therefore the sampling 
frequency can be the maximal frequency that the technology 
has achieved - currently around 500 MHz is possible.  

3.2. One-channel instrument  
The basic structure of Fig.1 can measure the integral or 

the average value of the input signal y. It is suitable for 
measurement of DC or slowly-varying quantities.  

As the word length of the flash A/D converter quite 
short, the quantization error is rather large. In order to 
reduce the influence of the quantization error, a uniform 
random noise (dither, denoted h in Fig.1), is added to the 
measured signal y [2,10]. Dither is in the range of one 
quantum of the A/D flash converter and its average value is 
zero. Then, if the average value of the signal within the 
interval is measured, the quantization error satisfies the 
conditions of the Central limit theorem and for the Theory 
of samples [3]. The standard deviation of the quantization 
error decays with the increase in the number of samples. 
This means that the measurement uncertainty due to A/D 
conversion process reduces with the increase of the 
measurement time interval and/or sampling frequency [3-8, 
11].  
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Figure 1: Basic structure for measuring 
the average value of the signal.  

3.3. Two-channel instrument  
The hardware can be extended by an additional channel, 

(a flash A/D converter and a random noise generator), and a 
multiplier, Fig. 2 [3,5]. 
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Figure 2: The principal structure of a 2-channel instrument  



This opens up the possibility of measurement of the 
integral (i.e. the mean value) of a product of two physical 
quantities. This is directly applicable if energy (the integral) 
or average power (the mean value) are to be measured. The 
two signals that are multiplied can be voltage & current [4], 
flow & temperature, flow & pressure, force & velocity, etc.  

If the same input signal is brought to the two input 
channels (y1 = y2), the signal r.m.s. value is measured [3,5]. 
If the dither signals h1 and h2 are uncorrelated, the ratio of 
the accumulator value and the number of samples gives the 
mean square value of the input signal. 

As in the one-channel instrument, the standard deviation 
of the quantization error satisfies the conditions of the 
Central limit theorem and for the Theory of samples. For a 
very large number of samples, the measurement uncertainty 
can be extremely low [5]. 

3.4. Measuring signals in a transform domain 
The input to the other channel of the multiplier can be a 

basic function from an orthonormed function set [7], say a 
function from the Fourier set [8]. In such a case, the average 
value of the accumulator represents the value of an 
appropriate coefficient of the signal decomposition in the 
orthonormed set. In this way, coefficients of the orthonor-
med transformation can be measured very accurately. The 
problem analysis that supports this statement is given in [5] 
and the main results are as given below. The only limitation 
is that the measured signal 1 1( )y f t=  is band limited. Due 
to the introduced dither, for a large number of samples N in 
the measurement interval 2 1T t t= − , the average error e  
due to quantization is zero and its variance is:  
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When the A/D resolution of the two channels is different, 
and then (2) becomes:  
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If the resolution of channel 2 is at least 2 bits greater than in 
channel 1, then 2 2

1 216∆ ≥ ∆  and (3) reduces to:   
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where 2F  is the 2L norm of applied orthonormed function 
set. In the case of Fourier orthonormed set, where 
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using Weierstrass approximation theorem, function 
( )1 1y f t=  can be approximated using trigonometric 

polynomial: 

 ( ) 0
1

1

cos sin
2 2

M
i i

i

a a i t b i t
f t

ω ω

=

+
≈ + ∑  (7) 

For Fourier orthonormed set, 2
1

2
F =  stands for all 

coefficients, except for 0a , where 2 1F = . Consequently, 
estimated measurement uncertainty iu  has the same value 
for every coefficient (except 0a ): 
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For 0a , it is 0 2 iu u= . 
If the sampling frequency sf  is 250 kHz in each 

channel, then N = 5000 samples are taken in every period of 
the fundamental 50 Hz frequency. If the A/D converter 
range is ±2.5 V and its resolution is 8 bits, then the ratio of 

iu  and range (2.5 V) falls between: 
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For a correct representation of a decomposed input 
signal, a large number of coefficients need to be obtained 
simultaneously i.e. the order of trigonometric polynomial, 
M, should be as high as possible. This is achieved by using 
2M+1 elementary instrument structures (two flash A/D 
converters, a multiplier and an accumulator) working in 
parallel. The beneficial feature is that only two dither 
generators are sufficient – one applied to channel 1 and the 
other to channel 2 of every parallel elementary structure.  

If a large number of elementary structures were 
implemented in full, the hardware of the resulting multi-
component instrument can become very complex and 
cumbersome. However, there is a neat simplification 
because the signals in channels 2 are known basic functions. 
Therefore the signals, the dither and the A/D converter 
outputs can be calculated in advance and stored in a 
memory. In this way, the A/D converter and the dither 
generator in channel 2 of every elementary instrument are 
physically eliminated from the hardware. The output from 
the memory is directly connected to the multiplier, as shown 
in Fig. 3 [7, 8]. This elementary structure has been named 
“stochastic digital processor of orthogonal transforms”. 
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Fig 3. Schematic of the stochastic instrument 
for measurement of one orthonormed component. 



3.5. A practical implementation  
The above instrument structure lends itself for and 

additional way of parallelising – several different input 
signals can be simultaneously decomposed. The prototype 
instrument of [8], shown in Fig.4, is implemented on a 
single chip and can perform harmonic analyses for the DC 
component and up to 49 harmonics (both cosine and sine 
components) in seven different input channels - three phase 
voltages and four (three line and neutral) currents. The 
measurement period (i.e. the spectrum refresh rate) can be 
set to an arbitrary number of fundamental cycles. If needed, 
a 20 ms measurement period can be chosen and it will give 
refresh rate of 50 times a second, but the accuracy will be 
limited. A longer measurement period will increase the total 
number of samples and hence significantly reduce the 
measurement uncertainty due to both A/D conversion 
process and signal noise. The resulting speeds of measuring 
orthonormed coefficients can be higher than using the FFT 
method and a standard DSP. 

 

Fig 4.  The prototype instrument for Fourier coefficients 
measurements, with the Fourier spectrum on the LCD display [8]. 

It has been shown in [7] that the resolution of the 
memorised dithered base functions should be at least two 
bits better than the resolution of the applied flash A/D 
converter. In such a case, for measuring orthogonal coeffi-
cients, the upper limit of the standard deviation is decoupled 
from the signal shape, the coefficient order and is identical 
for every coefficient, as shown by (4). The upper limit of the 
standard deviation depends only on the quantum size 
(resolution) of the applied flash A/D converter and on the 
norm of the transformation [7]. The result is that coefficients 
of orthonormed functions can be obtained accurately even 
without floating point arithmetic. As the short-word integer 
arithmetic is sufficient, a radical simplification of the 
necessary processing hardware is possible. Prototypes for 
measuring Fourier coefficients utilise a 6x8-bit and a 8x10-
bit integer multiplying accumulators [7,8].  

3.6. A view on mathematical tools 
The mathematics that governs the operation all types of 

the above presented instruments is relatively simple but very 
interesting. Rather than discussing the details of mathemati-
cal modelling, here we want to point out an element of 
philosophy. The average value on an interval is actually the 
integral of the measured function. As the digital integration 
is a process of adding, the commutative principle applies. 
Therefore the elements of the sum can be added in a 
deterministic fashion (as they are sampled in time), in an 
arbitrary chosen order, or in an absolutely random sequence 
– it is completely unimportant. Consequently, from the 
average value point of view, the time within the interval can 
be treated as a stochastic variable with a uniform distribu-
tion. In this way, the problem of measurement over the 
interval can be classified in the Probability theory and the 
area of Statistic theory of samples.  

For explanation of both simulation and experimental 
results, we use the Central Limit Theorem in a generalised 
form. We haven’t found this in the available literature, but 
thousands of results confirm its application. The calibration 
equipment of a top-class accuracy [12] has confirmed the 
accuracy of prototypes and therefore the validity of the 
derived formulae.  

4. CONCLUSION 

The paper compares strategies of digital measurements 
in a point and measurements over an interval. It is 
highlighted that measurement in a point puts high demands 
on A/D converters, which cannot provide high sampling rate 
and high precision simultaneously.  

The measurement over an interval strategy and its 
methods bring advantages for accurate measurements – high 
accuracies can be achieved even with a simple hardware. 
The simple hardware also enables easy paralleling of the 
elementary instrument structures and this provides 
possibilities for simultaneous measurements of several 
variables. Application of measurement over an interval 
methods to measure average signal values, signal products, 
root-mean-square values and signals in transform domains 
are presented. It is shown that very low measurement 
uncertainty can be obtained even with a coarse 8-bit A/D 
converter. A realized instrument for Fourier transform is 
also presented.  
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