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Abstract − The weight vector theory for Coriolis flow 

meters has been the subject of research presented by Hemp 
and co-workers in various articles. The underlying theory 
may not be easily understood. This paper explains the 
application of the weight vector theory for Coriolis 
flowmeters. The theory is applied to simple theoretical 
meter configurations consisting of a single straight pipe. The 
application of the weight vector approach is of relevance 
when investigating velocity profile effects, e.g., in Coriolis 
flow meters. Promising results have been found in recent 
literature showing the vulnerability of straight pipe Coriolis 
flowmeter configurations to velocity profile effects. The 
application of the weight vector theory is shown to be either 
limited to the investigation of few parameters or employs 
unrealistic boundary conditions and lacks comparative 
studies, making a more comprehensive study desirable. The 
usefulness of the weight vector theory to predict velocity 
profile effects for bended tube is not apparent from today’s 
state-of-the-art literature, but of great interest for flowmeter 
manufacturers since bended tubes designs are frequently 
used in today’s Coriolis flowmeters. 
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1.  INTRODUCTION 

The concept of the weight vector has been developed by 
J.A. Shercliff [1] and M.K. Bevir [2]. For electromagnetic 
flowmeters, this approach is extensively applied and 
experimentally validated. The weight vector theory for 
Coriolis flow meters has been developed with the purpose of 
predicting velocity distribution effects [3]. 

The extensive work done by J. Hemp has evidently had 
an impact on the development of the weight-vector approach 
for electromagnetic and Coriolis flowmeters. He initially 
worked with the theory for electromagnetic flowmeters, see 
for example [4,5], and has in the recent years put his focus 
on the application of the same theory for Coriolis 
flowmeters. 

Generally speaking, the weight vector theory for Coriolis 
flowmeters provides means to express the phase difference 
between sensing signals as a function of the steady flow 
field in the tube and a weight-vector field, which depends on 
vibrational flows in the appropriately vibrating tube without 
the steady flow. 

The basic weight vector theory for Coriolis flowmeters 
has been described in [6]. A technique is presented for 
developing an analytical expression for the weight vector. A 
first application of the same technique for Coriolis 
flowmeters is presented in [3] and [7]. The former shows the 
derivation of the weight vector theory for Coriolis 
flowmeters, whereas the latter presents the calculation of the 
Coriolis flowmeter sensitivity if the effect of fluid viscosity 
is to be taken into account. More recent studies are 
published in [8], [9] and [10]. A review of the state-of-the-
art findings and open questions regarding velocity profile 
effects in Coriolis mass flowmeters is presented in [11]. The 
presented study related to the weight vector theory considers 
straight tube configurations and employs results from [3,6]. 

The weight vector theory for Coriolis flowmeter may not 
be understood from the related literature. To remedy this 
and encourage further application and testing, the theory is 
briefly revised, the necessary equations are determined and 
their application is illustrated for single straight tube 
configurations. The aim of this paper is to discuss the 
applicability of the weight vector theory, e.g. to predict 
velocity profile effects of Coriolis flowmeters, and point out 
its vulnerability. 

2.  WEIGHT VECTOR THEORY FOR CORIOLIS 
FLOWMETERS 

The measuring tube is assumed to be a straight circular 
cylindrical shell with its geometry being defined by its 
length L, wall thickness h and inner tube radius Ri, Fig. 1. 
According to the weight vector theory for Coriolis 
flowmeters [10], the flow induced phase difference Δφ 
between sensor signals can be determined assuming linearity 
between the measured signals and the flow field 
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Fig. 1. Model of straight, clamped, fluid-conveying pipe. 
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where V0 is the steady fluid velocity vector in absence of 
pipe vibrations and Wφ the weight vector for the phase 
difference. The weight vector depends on certain vibrational 
flow fields in the absence of steady flow. The integral is 
taken over the entire volume of the fluid. The weight vector 
for the phase difference Wφ is defined as [10] 
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where W represents the weight vector and vr1
(1)(xs1,θs) = 

iωur
(1)(xs1,θs) the radial tube velocity of the working mode at 

the sensing point (xs1,θs) with ω being the angular operation 
frequency and ur

(1)(xs1,θs) the radial displacement of the 
working mode. The weight vector W can be defined using 
[3,6,10] 

 ( ) ( )(2) (1) (1) (2)ρ ⎡ ⎤= − ⋅∇ − ⋅∇⎣ ⎦W v v v v  (3) 

where ρ is the density of the fluid and v(1) and v(2) are fluid 
vibrational velocity fields. The field v(1) is a result of the 
tube vibration without steady flow in the symmetric working 
mode, i.e. driven by a central force. The field v(2) results 
from the antisymmetric tube vibration, without the presence 
of a flowing fluid, driven by equal and opposite unit forces 
applied at the sensing points (xs1,θs) and (xs2,θs). 

3.  APPLICATION EXAMPLES  

To exemplify the application of the theory presented in 
section 2, two examples from the state-of-the-art literature 
will be summarized. Major results will be presented and a 
reflection will be given on the value of these examples with 
respect to a future application on other Coriolis flowmeter 
designs. 

3.1. Determination of weight vector and phase 
difference for straight Coriolis flowmeter with non-
supported ends 

Hemp [8] investigated a straight Coriolis flowmeter, 
consisting of a single tube defined by the tube length L and 
the inner tube radius Ri, with non-supported free ends 
infinitely close to but unattached to adjacent piping. 
Neglecting viscosity and compressibility of the fluid, the 
equations for v(1) and v(2) are 

 i pωρ = −∇v  (4)  

 0∇⋅ =v  (5) 

with p being the pressure on the fluid. Equation (4) and (5) 
correspond to the momentum and continuity equation 
derived by employing mass conservation and Newton’s 
second law on a fluid element.  

Equations (4) and (5) have the approximate locally rigid 
tube solutions  
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where V is the local linear velocity of the tube and Ω the 
local angular velocity of the tube. Inserting (6) into (3) 
results in 

 ( )(1) (2) (2) (1)V Vρ= Ω − ΩW k  (7) 

indicating that the weight vector away from the tube ends is 
independent of r and θ. 

Assume a fully developed flow velocity profile, i.e. the 
phase shift Δφ can be determined using an axisymmetric 
velocity profile v = v(r) k. Equation (1) turns out to be [8] 
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where the axisymmetric weight function for phase shift 
Wφ(r) is defined using (2) 
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with the axisymmetric weight function W(r) being 
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where ( )W r  is the end-effect axisymmetric weight function 
with 

 ( ) ( ) ( )2 4 6
( ) 0.941 0.816 0.214 0.551r r r

b b bW r = − + − + (13) 

As a final result [8] states, that the phase difference Δφ 
neglecting end effects can be determined using 
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where M is the mass flow rate, EI the tube rigidity, ζ the 
sensor position and F(ζ/L) the non-dimensional sensor 
position function, cf. [8]. 

The study presented in [8] illustrates, in a straight 
forward way, the application of the weight vector theory to 
determine an expression for the phase difference between 
sensor signals Δφ of a straight tube Coriolis flowmeter. 

The chosen unrealistic boundary conditions, i.e. 
unsupported pipe ends unattached to adjacent piping, are a 
major handicap of the study. A more realistic investigation 
would incorporate clamped or at least hinged pipe ends, 
since these are better representations of actual Coriolis 



flowmeter designs. The reason for choosing the investigated 
boundary condition is not stated in [8]. The cause for this 
could for example be, that alternative boundary conditions, 
e.g. simply-supported pipe ends, would just complicate the 
results without changing the conclusions, or that the theory 
presented in [8] simply does not hold for other boundary 
conditions.  

In addition, the developed formulas have not been 
illustrated by numerical calculations. The results from [8] 
have neither been compared to nor confirmed by analytical 
or numerical results obtained with alternative solution 
procedures. On the basis of the information given in [8], it 
cannot be concluded whether the presented formulas are 
beneficial or not. 

3.2. Weight vector study of velocity profile effects in 
straight tube Coriolis flowmeter 

A straight Coriolis flowmeter with clamped ends is 
considered in [10], Fig. 1. The measuring tube has the 
following dimensions inner tube radius Ri = 10 mm, wall 
thickness h = 0.5 mm and length L = 200 to 600 mm and 
material properties density ρ = 4510 kg/m3, Young’s 
modulus E = 102.7 GN/m2 and Poisson’s ratioν = 0.34.  The 
results are presented for the working mode, with the 
distance between the sensing points being s = L/2 and in 
terms of variations of the flowmeter’s mass flowrate 
sensitivity [10]  
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corresponding to the ratio between the phase difference Δφ , 
determined using (1), and the mass flowrate qm  
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where V0 is the mean flow velocity. In [10] the velocity 
profile effect is presented as variations in the ratio between 
the mass flowrate sensitivities for chosen velocity profiles K 
and for the flat, plug-flow profile K0, 
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where ( )W r is the axisymmetric weight function, see [10]. 
Equation (16) is illustrated by Fig. 2, which shows 
variations of the mass flowrate sensitivities with aspect ratio 
L/Ri for laminar and turbulent flows, respectively Klam and 
Kturb, relative to the sensitivity for the flat velocity profile 
K0, assuming a circumferential mode where the tube cross-
section is not deformed during the tube vibration. From Fig. 
2 it can be seen that the ratio between the turbulent flow and 
flat velocity profile sensitivity is almost 1 for long tubes. 
This means that there is no difference between assuming a 
simple plug flow rather than a more realistic turbulent flow 
to determine the flowmeter sensitivity for long tubes using 
weight vector theory. This does not apply for short tubes as 
it can be seen in Fig 2. Similar conclusions are drawn when 
laminar flow is assumed. For short tubes, the sensitivity pre- 
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Fig. 2.  Variations of mass flowrate sensitivities versus aspect ratio 
L/Ri for laminar and turbulent flow, respectively Klam and Kturb, 

(relative to sensitivity for  plug flow K0) in case of circumferential 
mode with non-deformed cross-section during tube vibration, 

adapted from [10]. 

dicted using a plug flow assumption is larger than the 
sensitivity predicted using the laminar flow assumption. 
This also applies for long tubes, however the difference not 
as pronounced as for short tubes.  

Table 1 shows mass flowrate sensitivities calculated for 
the two lowest circumferential modes, i.e. assuming the tube 
cross-section to be, respectively, non-deformed and 
deformed during the tube vibration, and for different tube 
aspect ratios using a direct and the weight vector solution 
procedure. This corresponds to a quantitative test of the 
theory for a few parameters. The direct solution procedure is 
described in [10]. It can be seen in Table 2 that the results, 
with a few exemptions, are in agreement. This illustrates the 
applicability of the weight vector theory as it is presented   
in [10].  

The applicability of the weight vector theory to 
determine the sensitivity of a straight Coriolis flowmeter has 
been shown in [10]. A quantitative test employing a few 
parameters shows agreement between the results obtained 
by the weight vector theory and a direct solution procedure. 
Indications are found that the simple plug flow assumption 
can be used to estimate the sensitivity in case of high aspect 
ratios, e.g. long tubes. Furthermore it is shown that short 
tubes are more vulnerable to velocity profile effects than 
long tubes. The weight vector theory predicts a higher sensi- 

Table 1.  Comparison of the mass flowrate sensitivities from the 
direct and the weight vector solution procedure, adapted from [10]. 

Flat velocity profile with ρ = 1000 kg/m3 and V0 = 1 m/s.  

Mass flowrate sensitivity K0 (rad/(kg/s)) 
Non deformed tube 
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Weight 
vector 

Direct 
solution 

Weight 
vector 

20 4.349·10-3 4.349·10-3 2.996·10-2 2.996·10-3 
40 7.348·10-3 7.348·10-3 1.705·10-1 1.705·10-1 
60 1.062·10-2 1.062·10-2 4.259·10-1 4.262·10-1 
 



tivity when shifting from laminar to turbulent flow, which 
agrees with practical experiences from a Coriolis flowmeter 
manufacturer. Compared to [3,8], [10] offers indications that 
the weight vector theory in fact can be used to evaluate 
velocity profile effects for Coriolis flowmeters. It is 
apparent from the results presented in [10], that velocity 
profile effects cannot generally be neglected for Coriolis 
flowmeters, especially when a short tube design is 
employed. This is valuable information, since velocity 
profile effects often are ignored when designing Coriolis 
flowmeters. The work [10] leaves open questions, since it 
does not investigate the influence of other parameters, e.g. 
alternative boundary conditions or curved measuring tube 
shapes, on velocity profile effects. 

4.  DISCUSSION AND CONCLUSION 

The early literature regarding the weight vector theory 
for Coriolis flowmeters does not provide sufficient 
information to enable a straight-forward application of the 
theory on Coriolis flowmeters. The usefulness of the weight 
vector theory to evaluate velocity profile effects for Coriolis 
flowmeters is not shown.  

In the recent literature, promising results have been 
published showing that especially short tube designs are  
vulnerable to velocity profile effects, so that velocity profile 
effects cannot generally be neglected for Coriolis 
flowmeters. However the quantitative test, to compare the 
results from weight vector theory calculations to results 
obtained by direct solution procedures, is limited to a few 
parameters, so a more comprehensive study is necessary. 

The major lack of the state-of-the-art weight vector 
theory for Coriolis flowmeters is that it is limited to straight 
pipes with more or less realistic boundary conditions. 

Even though it would be of great interest for 
manufacturers of Coriolis flowmeters with bended tube 
designs, the usefulness of the weight vector theory to predict 
velocity profile effects of bended tube configurations is not 
apparent from the today's literature. A first step in this 
direction is made by J. Hemp, who has determined the 
weight vector for the three straight sections of rigid u-tube 
flowmeter, however, without determining the weight vector 
in the curved corners of the meter, cf. [3,6], which would 
lead to a more complicated expression for the weight vector.  
The three obtained constant expressions for the weight 
vectors are parallel to the tube axis and pointing in the flow 
direction in each straight section. This indicates that the 
influence of bended tubes cannot be neglected when 
determining the weight vector for bended tube designs. If it 
could be shown, that the weight vector theory for Coriolis 
flowmeters is also useful to study velocity profile effects in 
bended tube configurations, this would provide a powerful 
tool, e.g. for flowmeter manufacturers. Its major advantage 
will be that it can validate and possibly replace the time-
consuming and computational demanding simulations which 
are used today, i.e. numerical fluid-structure-interaction 
simulations. 

The steady flow assumption indicates that the presented 
theory is only valid when the flow in the flowmeter is 
laminar. However, in real Coriolis flow meter applications 

the flow is usually turbulent. J. Hemp argues in [3], that the 
weight vector theory probably still is valid, since filtering of 
the sensor signals should remove the effect of turbulence 
related velocity fluctuations. An experimental validation of 
this statement using real Coriolis flowmeters is not apparent 
from the literature. Others have used mathematical 
expressions for describing turbulent velocity profiles, cf. 
[10], and used these as input in the presented theory. This 
approach gives promising results. However this approach 
does not replace the necessity of further investigations to 
confirm the applicability of the weight vector theory in case 
of turbulent flow. Numerical methods and/or experiments 
with real Coriolis flowmeters can, in this context, be tools to 
employ.  

Computational fluid dynamics can be used to clarify 
whether fluid properties, e.g. viscosity and compressibility, 
and pipe characteristics which influence the fluid flowing in 
the vibrating pipe, e.g. internal pipe wall roughness, can be 
neglected or how they might change the weight vector 
theory for Coriolis flowmeters. Under certain assumptions, 
e.g. neglecting the effect of viscosity, J. Hemp argues based 
on ultrasonic flowmeter theory, that the expression for 
determining the weight vector is the same for compressible 
and incompressible flow [3]. This indicates that neglecting 
the effect of viscosity has an influence on the applicability 
weight vector theory for Coriolis flowmeters. This 
indication should be checked to test it and its extend, e.g. by 
using numerical methods, since it has not been studied 
further according to the know literature.          

To sum up, it has been shown that the weight vector 
theory is applicable for predicting velocity profile effects in 
Coriolis flowmeters. The theory is however vulnerable, 
since comprehensive studies are missing and realistic tube 
designs and boundary conditions have not been investigated. 
This leads to the still open question: Can the weight vector 
theory for Coriolis flowmeters be easily applied to real 
Coriolis flowmeter designs, or not? The theory seems to 
hold a significant potential but also does not seem straight-
forward in practical application involving real Coriolis 
flowmeters. The required fluid vibrational velocity fields 
may, e.g., not be readily set up, and may even involve 
computational demanding and time-consuming numerical 
simulations. 
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