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Abstract − The Guide to the expression of uncertainty 

has been around for 15 years and has been widely adopted 
by science and industry. Over time more and more complex 
measurements are evaluated based on these principles. As a 
consequence the correlation between quantities has become 
an important issue in the evaluation of measurement 
uncertainty. In this paper we will give an overview about 
covariance and correlation and the different state of the art 
techniques to handle them during the uncertainty evaluation. 
We will discuss the handling of observations by extending 
the well known calculus for the degrees of freedom for 
correlated cases. Next we will discuss the difficulties and 
limitations in handling correlations with Monte Carlo 
simulations together with a practical algorithm to ensure that 
correlation matrixes are positive semi-definite. 
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1.  STANDARD GUM FRAMEWORK WITH 
CORRELATION 

One of the biggest advantages of the GUM method is 
that the estimation of the measurement uncertainty is 
derived from the model for evaluating the result. All 
available knowledge about a specific measurement can be 
incorporated into the measurement equation. With the 
freedom to use an appropriate model, the GUM method can 
be tailored to nearly every measurement 
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The mainstream GUM approach is to translate the 
knowledge about the quantities in the model equation in a 
standard uncertainty and to use the law of propagation of 
uncertainties to propagate these standard uncertainties 
through a linearized model to arrive at the standard 
uncertainty of the result. Mutual dependencies in the 
knowledge about the input quantities can be expressed as a 
covariance or a correlation coefficient and can be used 
during the propagation. We recommend the usage of 
correlation coefficients because the normalized value of the 
correlation coefficients 
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expresses the dependency between the uncertainties 
independent of the value of the uncertainty and can be 
directly used in the propagation of uncertainties: 
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Equation 1 relates result y with the estimates of the input 
quantities xi. As a consequence the result and the input 
quantities get correlated and the correlation can be 
calculated by 
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In a multiple result evaluation the evaluation model 
consists of a system of m measurement equations 
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Since the measurement equations in Equation 5 relates 
input quantities to result quantities the result quantities 
become correlated as far as they are calculated from 
common input quantities. For a linearized model this 
correlation can be calculated based on the equation given in 
the GUM (H.9) 
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We can derive Equation 4 from Equation 6 as explained 
in [3]. For a single result the expanded uncertainty 
associated with the result is calculated by multiplying the 
standard uncertainty with a coverage factor k. 

2.  CORRELATION IN THE OBSERVED DATA 

If during a measurement more than one quantity is 
observed and the observed values are partly mutually 
dependent then the correlation coefficient between any pair 
of quantities can be calculated by the equation given in the 
GUM 
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with qi,l and qj,l being values of a series (l = 1...n) of 
observations, qi and qj being the average value and s(qi) and 
s(qj) being the experimental standard deviation of the series. 
The degrees of freedom νi and νj are the number of 
observations n minus one. 

One way to set the coverage factor k is by using a t-table 
and looking up the value based on the effective degrees of 
freedom. The GUM uses the Welch-Satterthwaite formula to 
calculate the degrees of freedom. This formula cannot be 
used if any input quantities with non infinite degrees of 
freedom are correlated. We want to propose an extended 
version of the Welch-Satterthwaite formula [4] which 
handles correlated input quantities correctly: 

 

2 22
i i

y i1

1
j j2i i

1 1i j

( ) ( , )( ) =

( ) ( , )( ) ( , )
2 ( , )

n
i

i

n n
ji

i j
i j i

u x r y xu y

u x r y xu x r y x
r x x

ν ν

ν

=

−

= = +

⋅

⎡ ⎤⋅⋅⎢
ν

+
⎢ ⎥⎣ ⎦

∑

∑ ∑ ⎥

 (8) 

In case all correlation coefficients r(xi,xj), i ≠ j are zero, 
Equation 8 simplifies to the Welch-Satterthwaite formula. 

Note that two quantities of type A which are correlated 
need to have the same degrees of freedom. Equation 8 has 
some other interesting features. If two quantities X1 and X2 
are totally correlated (r(x1, x2) = ±1) then the effective 
degrees of freedom based on Equation 8 is equal to the 
degrees of freedom of X1 or X2 which need to be the same. 
This is consistent with the understanding that totally 
correlated quantities essential represent the same 
knowledge. 

3.  MONTE CARLO SIMULATION WITH 
CORRELATED INPUT QUANTITIES 

The supplement 1 to the GUM [2] describes an 
alternative way to do the calculations to propagate the 
uncertainty for a given measurement model. The method can 
handle correlation as well as long as all quantities which are 
correlated are distributed normally or are totally correlated. 
In practice this can be an important limitation in case the 
distribution of the correlated quantities differs significantly 
from normal. This is for example the case if a t-distribution 
is used to bootstrap the distribution for quantities of type A. 
Therefore the supplement 1 uses a Bayesian evaluation of 
type A which is based on a normal distribution. 

Another well known restriction is that the correlation 
matrix must be positive semi-definite (all Eigen values 
larger or equal to zero) otherwise the algorithm will fail to 
simulate a multivariate normal distribution. 

The mainstream GUM method does not have this 
limitation. The calculation is possible as long as the uncer-
tainty calculated from Equation 3 is greater or equal to zero 
although it might not make much physical sense to do so. 

In practice a positive definite correlation matrix can 
become negative definite because of rounding errors if the 

correlation coefficients are rounded to 2 or 3 digits. The 
probability for this effect is dependent on the size of the 
matrix. The effect has been studied via simulations [5]. The 
results are shown in Figure 1. The probability that a 10 × 10 
matrix is not positive semi-definite after rounding of the 
values to two significant digits is close to 1. 
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Fig. 1.  Probability that a correlation matrix is not positive semi-

definite after rounding. 

Therefore it is useful to implement a matrix-correction 
algorithm which ensures that all Eigen values are positive 
prior to any calculation as suggested in [2]. We have studied 
different matrix correction methods. We think that an 
algorithm which shifts the negative Eigen values (spectral 
decomposition) [6] is useful. However such algorithm 
should be combined with a check of the least maximum 
norm [7] of the change to ensure that the modified matrix is 
close enough to the original matrix. The least maximum 
norm can be calculated by 

 LMN ,
max ij iji j

N r= − p  (9) 

with rij being the correlation coefficients of the original 
matrix and pij being the elements of the corrected matrix. 

Simulations with 108 random correlations matrixes show 
that the corrected matrixes produced by the algorithm do not 
differ more than ± 1 on the last significant digit of the 
rounded correlation matrix. This limit should be used for the 
least maximum norm to ensure that the correlation matrix is 
only negative definite because of rounding and not because 
of any other reasons such as incorrect data. 

The matrix correction algorithm together with a limit on 
the least maximum norm can be incorporated into the 
mainstream GUM method to numerically validate a given 
correlation matrix. A matrix is valid if it is either positive 
semi-definite or if it can be corrected and the norm does not 
exceed ± 1 on last significant digit. 

4.  CONCLUSIONS 

The GUM and the supplement provide a solid basis for 
the calculation of uncertainty in measurement including 
correlations and multiple results. The standard GUM 
procedure can be extended by the calculation of the degrees 



of freedom in correlated cases and a robust matrix 
validation. 

The Monte Carlo simulation can benefit from a robust 
matrix correction method. In general the number of 
significant digits of the values in a correlation matrix should 
be at least 3. Especially for correlation matrixes of larger 
size (greater 4 × 4) the number of significant digits should 
be increased further to avoid rounding effects. 
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