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1. INTRODUCTION 

The amount of random noise present in an analog to 
digital converter (ADC) affects directly its performance by 
reducing the effective number of bits. When a problem with 
a given ADC is suspected, for instance, one of the first 
things to consider is the amount of random noise present. To 
estimate the standard deviation of the random noise, the 
IEEE 1057 Standard for Digitizing Waveform Recorders 
suggest a specific test procedure [1]. It consists of shorting 
the ADC input and acquiring two sets of samples with the 
same length (M) and subtracting the output codes obtained 
sample by sample. This eliminates systematic contributions 
of the ADC or the stimulus signal but keeps the random 
noise. The mean square difference is then computed and 
used in an estimator that returns a value for the random 
noise standard deviation. 

When there is too little random noise present, the output 
codes may not vary from sample to sample and from set to 
set. If this is the case the estimator used does not work. It is 
suggested that a small amplitude triangular signal be used to 
stimulate the ADC causing the output codes to vary. The 
estimator to use in this situation is different from the one 
used for a short-circuited ADC. It is an heuristically derived 
estimator that is biased. It is this procedure that is the focus 
of the paper. The goal is to determine how large the bias of 
the estimator is. 

Note that the knowledge of the amount of random noise 
present in the ADC or in the test setup is also useful for the 
computation of the uncertainty of the results obtained with 
other ADC test methods like the Standard Static Test [1] or 
the Standard Histogram Test [1-7]. 

In the following we will analyze the expression used in 
[1] to estimate the standard deviation from the mean square 
error. We then present a study about the influence of the 
stimulus signal amplitude and offset on the estimation of the 
random noise standard deviation. Finally we determine the 
maximum estimation error incurred when estimating the 
random noise using the expression presented in [1]. 

The stimulus signal amplitude and offset affect the ADC 
random noise estimation because the heuristically derived 
estimator is based in asymptotic cases of noise standard 
deviation which are not dependent on stimulus signal 
amplitude or offset when in fact the ADC output codes do 
depend on the stimulus signal amplitude and offset. 

2. RANDOM NOISE ESTIMATOR 

Due to the presence of random noise at the ADC input, 
the output code (k) can be considered a discrete random 
variable which can assume any value between 0 and 2 1bn −  
for a nb-bit ADC. The variance of the output codes of the 
ADC when its input has a constant value of y is (adapted 
from eq. D.7 of [1]) 
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where σr is the random noise standard deviation in LSB and 
U[k] is the kth normalized transition voltage of the ADC 
(transition voltage divided by the ideal code bin width Q). 
The variance of the output codes for a triangular stimulus 
signal can be calculated from the amplitude distribution, fy, 
of the stimulus signal [8], 
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For a triangular stimulus signal, with an amplitude A and 
an offset C (in volt), normalized by the ideal code bin width 
(AQ=A/Q and CQ=C/Q) the amplitude distribution is 
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The output codes variance is thus 
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The corresponding standard deviation is represented in 
Fig. 1 by a solid line. 

For small additive noise standard deviation the variance 
2
kσ  is obtained by inserting (1) into (4) leading, after some 

manipulation, to 
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Fig. 1. Representation of the code standard deviation as a 
function of the additive noise standard deviation (solid line) for a 
triangular stimulus signal with amplitude Q/2. The dashed and the 
dot-dashed lines represent the approximation for small and large 

additive noise standard deviation given by (6) and (7) respectively. 
The circles represent the uncertainty of the codes standard 

deviation obtained experimentally. 

In order to understand the dependence of σ k  on the 
noise standard deviation the asymptotic cases of small and 
large noise standard deviation are going to be considered. 
To compute the value of this integral when the noise 
standard deviation goes to 0 the stimulus signal amplitude 
can be considered infinite, leading to 
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This approximation is represented in Fig. 1 by the 
dash-dotted line. It can be seen that in fact it approximates 
the solid line for small values of σr. 

In the case of a noise standard deviation much higher 
than the ideal code bin width ( )rσ →∞  the codes standard 
deviation approximates the noise standard deviation: 
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This situation is represented by the dotted line in Fig. 1. 

3. EXPERIMENTAL VALIDATION 

A triangular stimulus signal, with amplitude 39.216 mV 
and frequency 10 Hz, was applied to a 12-bit data 
acquisition board (Keithley DAS 1601) in the ±10V range 
and two sets of 10000 samples were acquired at a sampling 
frequency of 100 kHz. The value of amplitude and 
frequency choosen does not have any particular meaning 
and were measured with a high precision multimeter. The 
purity of the triangular stimulus signal is terms of harmonic 
distortion in not critical since the subtraction performed 
eliminates deterministic non-idealities in the ADC or the 
stimulus signal. 

Only the 8 most significant bits were used so that the 
ADC would present an almost ideal behavior. This was 
validated by testing the data acquisition board (using all 12 

bits) with the Standard Histogram Test and obtaining an 
integral non-linearity (INL) and differential non-linearity 
(DNL) lower than 0.5 LSB. 

A Stanford DS360 function generator was used to 
generate the additive noise and a Wavetek 9100 calibrator 
was used to generate the triangular wave. Each instrument 
was connected to a differential input of the data acquisition 
board to add the Gaussian noise to the triangular wave. 

The results are represented with circles in Fig. 1 where a 
good agreement with the theoretical curve, represented by 
the solid line, is observed. 

4. STIMULUS SIGNAL AMPLITUDE 

As observed in equation (4), the code standard deviation 
depends on the stimulus signal amplitude. This can be 
verified in Fig. 2 where two cases are plotted, one for 
AQ=0.5 (thin line) and another for AQ=0.75 (thick line). The 
difference is highest for values of noise standard deviation 
smaller than 0.5LSB. 
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Fig. 2. Representation of the code standard deviation as a 

function of the additive noise standard deviation for a triangular 
stimulus signal with amplitude Q/2 (dotted line) and an amplitude 

0.75Q (solid line). 

That dependence can be also observed in Fig. 3 for two 
different values of triangular wave offset. The case of null 
amplitude (AQ=0) corresponds to the DC input case. It can 
be seen that the higher the triangular wave amplitude the 
less influence it has on the code standard deviation. 
Whenever the amplitude A is a multiple of Q/2, that is, 2AQ 
is integer, the code standard deviation has the same value. 

When performing the test to estimate the random noise 
standard deviation, a value of triangular wave amplitude has 
to be chosen. This choice will influence the estimated value, 
however, observing Fig. 3, there are some values that seem 
more advantageous, namely odd multiples of Q/2 (AQ=0.5, 
1.5, 2.5, …) because the slope of the curve in those points is 
smaller making the estimate less sensible to errors in the 
triangular wave amplitude that in practical conditions are 
sure to exist. Also the output code variance becomes 
practically independent of the stimulus signal offset. The 
higher the triangular wave amplitude, the higher will be the 
additive noise introduced by the function generator (because 
of its different ranges with higher amplification) making 
very high values of amplitude not advisable. 
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Fig. 3. Representation of the code standard deviation as a 

function of the triangular wave amplitude divided by the ideal code 
bin width. The solid line represents is for an offset equal to an 

ADC transition voltage and the dotted line a situation where the 
offset value is exactly between two consecutive transition voltages. 

The dotted line represents the value taken by the code standard 
deviation when the triangular amplitude is Q/2. A value of noise 

standard deviation of 0.1 LSB was used. 

The IEEE standard [1] suggests the use of AQ = 5 without 
explaining the reason. We hope the work presented here 
sheds some light on the subject. As seen here, a marginally 
better choice would be, for instance, AQ = 5.5. 

5.  ESTIMATION ERROR 

The IEEE standard [1] presents a heuristically derived 
expression,  
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Note that the variables σ and mse used in [1] are expressed 
in volt and squared volt respectively while the variables σr 
and msd used here do not have dimensions. 

The expected value of the mean square difference is [8] 
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The expected value of the estimated random noise standard 
deviation, given by (8) can be approximated by 
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Inserting (10) into (11) leads to 
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where σk is given by (5). 

The error of the additive noise standard deviation 
estimation is given by 

 { }E
r

r re
σ

σ σ−  (13) 

and is represented in Fig. 4. 
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 Fig. 4. Representation of the estimation error of the 

additive noise standard deviation, obtained with (8), as a function 
of the actual standard deviation. 

It can be seen that the error is always smaller, in absolute 
value, than 0.022 LSB. When σr→∞ the error goes to 0.  

The factor 4 used in (8) is very close to the value of 
3.8203 which leads to the optimum approximation for an 
expression of the kind of (8) and corresponds to the position 
of the minimum in Fig. 5. 
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 Fig. 5. Representation of the estimation error of the 

additive noise standard deviation, obtained with (8), as a function 
of the parameter R. 

In Fig. 6, the maximum estimation error for different 
values of triangular stimulus signal amplitude and offset is 
represented. It can be seen that for small values of amplitude 
the maximum error depends strongly on the triangular wave 
offset. For values of amplitude higher than twice the ideal 
code bin width the maximum estimation error is practically 
independent of both amplitude and offset and is lower than 
0.022 LSB. 

 



 
 Fig. 6. Representation of the maximum estimation error of 

the additive noise standard deviation, obtained with (8), as a 
function of the triangular wave amplitude and offset. 

6. CONCLUSIONS 

In this paper, the test method proposed by the IEEE 
1057-2007 standard [1] to estimate the random noise 
standard deviation was analyzed in detail. The expression 
presented there to calculate the additive noise standard 
deviation from the ADC output codes mean square 
difference is explained here from a different perspective. 
The influence of both triangular wave amplitude and offset 
on the estimation error was studied. The actual error on 
estimating the noise standard deviation when using that 
expression presented in [1] is calculated and it was 
concluded that it was smaller than 2.2% of the ideal ADC 
code bin width (0.022 LSB). The choice of triangular 
stimulus amplitude is studied and a justification for the 
value proposed in [1] is given. This study of the estimator 
bias complements the study of the estimator precision 
published in [9]. 

We suggest here that in the case were a triangular wave 
generator is not available the test be carried out with a DC 
stimulus signal, with any value inside the ADC range, and 
that the noise standard deviation be estimated as being equal 
to the code root mean square error, divided by 2. If the value 
obtained is smaller than Q/2 the value used as the noise 
standard deviation estimative should be Q/2. Of course the 
standard deviation could be smaller but, as shown here, it 
could not be higher. In summary, we propose, just for the 
case where a triangular generator cannot be used, the 
following expression for the estimation: 
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Experimental results were presented that validate the 
approach taken. 
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