
XIX IMEKO World Congress
Fundamental and Applied Metrology

September 6−11, 2009, Lisbon, Portugal

SOFTWARE QUALITY CHARACTERIZATION OF THE FLEXIBLE
FRAMEWORK FOR MAGNETIC MEASUREMENTS AT CERN

Pasquale Arpaia1,2, Vitaliano Inglese2,3, Giuseppe La Commara1

1 Department of Engineering, University of Sannio, Benevento, Italy

arpaia@unisannio.it
2 CERN, Dept. TE (Technology), Group MSC, Geneva, Switzerland

Vitaliano.Inglese@cern.ch
3 Department of Electrical Engineering, University of Naples - Federico II, Napoli, Italy

Abstract − The paper deals with the measurement of

software quality in frameworks for automatic test systems.
In particular, the quality characterization of software
components inside the Flexible Framework for Magnetic
Measurements, developed at the European Organization for
Nuclear Research (CERN), is illustrated with respect to the
ISO 9126 reference model through the introduction of
suitable metrics. Experimental results for code quality
assessment are finally reported.

Keywords: Automatic measurement systems, software
quality, software metrics.

1. INTRODUCTION

Quality is a key issue in software development. The
quality of a system is the result of the quality of its elements
and their interactions. Although software quality can be
described from different perspectives [1], [2], [3], it can be
defined in a general way as the capability of a software
product to satisfy stated and implied needs when used under
specified conditions [4]. Pursuing software quality is always
worthwhile, since the cost of achieving a high quality level
is widely overtaken by the cost of nonquality (having a
software incapable of providing the required functionalities
when needed).

The assessment of the software quality cannot be
achieved without defining how to measure it in a
quantitative way. For this reason metrics were introduced.
The term metric is defined as a measure of the degree to
which a process or product possesses a certain quality
characteristic [5].

Even though the original motivations for deriving
software measurements were almost entirely managerial
(managers wanted to predict project costs at early stages in
software lyfe-cycle and assess the productivity of the
personnel [6]), very soon many researches concluded that no
meaningful measures would be possible without
consideration of the quality of the software produced.
Anyway, metrics must be evaluated within the frame of a
quality model to avoid their misuse. A model is an
abstraction of reality, allowing to discard useless details and
view an entity or a concept form a particular perspective [6],

understanding the interactions among the parts forming the
whole system of interest. In order assess the quality level
achieved by an entity, a model defines (i) the entity and its
attributes being measured, (ii) domain and range of the
resulting measures, (iii) meaning of the single measures, and
(iv) the relationships among several measurements.

Measures can be used to estimate future characteristics
from previous ones or to determine the current condition of
a process, product, resource. Therefore another
characteristic of models is that they distinguish, as main aim
of the measures, the prediction from the assessment.

A considerable amount of work has been devoted to the
formulation of so-called quality models. One of the first was
proposed by Gilb [7], according to whom any quality
characteristic can be measured directly. The quality concept
is broken into component parts until each can be stated in
terms of directly measurable attributes. Other models were
proposed by Boehm [5] and McCall [8]. These hierarchical
models are based on the assumption that there are a number
of important high level quality factors that are determined
by lower level criteria supposed much easier to measure
than the corresponding factors. Actual measures, metrics,
are proposed for the criteria. The model describes all the
relationships between factors and criteria, so that the former
can be quantified in terms of measures of their dependent
criteria. This conception of modeling quality was more
recently at the basis of international efforts that led to the
development of a standard for software quality
measurement, defining a software quality model (ISO 9126
[9]-[12]), the software measurement process (ISO 15939
[13]), and the software evaluation process (ISO 14598 [14]).
The standard recommends six quality characteristics, further
refined in subcharacteristics, as basic set for quality
evaluation.

Given a particular problem, techniques like the Goal-
Question-Metric [15] can help identify which measures are
to be taken into account to monitor and improve quality in
the specific case.

In this paper, the approach proposed in the standard
ISO 9126 is employed as reference model for the quality
characterization of the Flexible Framework for Magnetic
Measurements (FFMM [16]) developed at CERN in the
frame of a cooperation with the University of Sannio. In the

following, Section 2 describes the architecture of FFMM,
the reference quality model, and the metrics chosen for the
characterization, Section 3 presents the experimental results
obtained on the release 3.0 of FFMM.

2. SOFTWARE QUALITY IN FFMM

The FFMM is a software framework for magnetic
measurement applications based on Object Oriented
Programming (OOP), and Aspect-Oriented Programming
(AOP) [17]. Its basic ideas and architecture are discussed in
[18], [19]. In particular, FFMM aims at supporting the user
in developing software for automatic measurement systems
by maximizing quality in terms of flexibility, reusability,
maintainability, and portability, without neglecting
efficiency, vital in actual test applications. Moreover, the
requirements for a wide range of magnetic measurement

applications, such as needed for the test of superconductive
magnets for particle accelerators, have to be satisfied.

In Fig.1 [16], the FFMM architecture is illustrated. A test
engineer (end user) produces a description of the
measurement application, User Script, whose semantic and
syntactic correctness is verified by the Script Checker. Then,
from the User Script, the Builder assembles the
Measurement Program, according to the architecture of the
Scheme by picking up suitable modules from the Software
Module Library. If some modules are not available in the
library, a template is provided to the user (administrator
user) in order to implement them according to a suitable
predisposed structure. Once debugged and tested, the
Measurement Program will be stored in the Database in
order to be reused.

If software quality requirements are not clearly stated,
they could be interpreted in different ways by different
people. This could result in software that is inconsistent with
user expectations and of poor quality. As said before,
international standards were therefore developed to address
this issue and provide a definition of software quality, along
with guidance for its evaluation [9]-[14]. This paper aims at
the assessment of the quality level achieved by the release
3.0 of FFMM according to the guidelines of these standards.

The software quality model provided by the standard
ISO 9126 [9] defines six quality characteristics (Fig. 2):
• Functionality: the capability of the software product to

provide functions which meet stated and implied needs
when the software is used under specified conditions.

• Reliability: the capability of the software product to
maintain a specified level of performance when used
under specified conditions.

• Usability: the capability of the software product to be
understood, learned, used and attractive to the user,
when used under specified conditions.

• Efficiency: the capability of the software product to
provide appropriate performance, relative to the amount
of resources used, under stated conditions.

• Maintainability: the capability of the software product
to be modified. Modifications may include corrections,
improvements or adaptation of the software to changes
in environment, and in requirements and functional
specifications.

Fig. 1. The FFMM architecture [16].

Fig. 2. The ISO 9126 quality model.

• Portability: the capability of the software product to be
transferred from one environment to another.

The standard defines an additional quality characteristic:
• Quality in use: the capability of the software product to

enable specified users to achieve specified goals with
effectiveness, productivity, safety and satisfaction in
specified contexts of use.

The quality characteristics have defined sub-
characteristics and the standard allows for user defined sub-
subcharacteristics in a hierarchical structure. The ISO
framework is completely hierarchical, each subcharacteristic
is related to only one characteristic. The defined quality
characteristics cover all quality aspects of interest for most
software products and as such can be used as a checklist for
ensuring a complete coverage of quality.

The quality model defines three different views of
quality:
• Software quality in use
• External software quality
• Internal software quality

The software quality in use view is related to application
of the software in its operational environment, for carrying
out specific tasks by specific users. External software
quality provides a black box view of the software and
addresses properties related to the execution of the software
on computer hardware and applying an operating system.
Internal software quality provides a white box view of
software and addresses properties of the software product
that typically are available during the development. Internal
software quality is mainly related to static properties of the
software. Internal software quality has an impact on external
software quality, which again has an impact on quality in
use.

In the following, the ISO reference model is employed
for the assessment of the internal quality of FFMM source
code. At this stage, the release 3.0 is not yet widely used by
users others than the developers. Moreover, innovative user

interfaces are under development but not yet employed,
contributing to make premature the evaluation of the quality
in use. The proposed metrics are product-oriented (such as
size, maintainability, portability), rather than process-
oriented (time, costs, productivity), and are meant to be
employed for quality assessment and improvement. Metrics
specifically developed for object-oriented systems
evaluation are also considered, while modularity and
performance of the AOP fault detector included in the
framework are discussed in a specific paper [20].

3. EXPERIMENTAL RESULTS

In this section, the results of the FFMM 3.0 software
quality characterization are discussed. The analysis was
carried out by means of the tool UnderstandC++ [21].
Heuristic thresholds were employed, as proposed in
literature [22]-[24], in order to define the metrics target
values. An example of metrics, quality characteristic they
affect, and target values is reported in Tab. 1 [22], [25]. In
particular, the complexity metrics (such as Essential
Complexity and Cyclomatic Complexity) measure the logic

Table 2. FFMM 3.0 size metrics summary.

FFMM 3.0 size metrics summary
Blank Lines 4'115
Classes 96
Code Lines (LOC) 16'253
Comment Lines 6'977
Comment to Code Ratio 0.43
Declarative Statements 4'779
Executable Statements 8'642
Files 131
Functions 1'082
Inactive Lines 172
Lines 28'119

Table 1. Quality characteristics, metrics, and target values.

Maintainability Portability

Class Depending Child (CDC) FALSE Class Depending Child (CDC) FALSE

Class Depth (DEPTH) ≤ 7 Class Depth (DEPTH) ≤ 7

Essential Complexity (Ev(G)) ≤ 4 Coupling between Objects (CBO) ≤ 2

Multiple Inheritance (FAN IN) ≤ 1 Multiple Inheritance (FAN IN) ≤ 1

Access to Protect or Public Data
(PUB_ACCESS) = 0 Lack of Cohesion of Methods

(LOCM/LCOM) ≥ 75%

Access to Public Data Definition
(PUB_DATA) = 0 Response for Class (RFC) ≤ (WMC*DEPTH)+1

Response for Class (RFC) ≤ (WMC*DEPTH)+1 Weighted Methods for Class (WMC) ≤ 14

Cyclomatic Complexity (v(G)) ≤ 10

Weighted Methods for Class (WMC) ≤ 14

Module Design Complexity (Iv(G)) ≤ 7

Design Complexity (S0 = Σ(Iv(G))) smaller the better

complexity of the software modules and hence the effort
required for testing and maintain them. The object-oriented
metrics (such as LCOM, FAN IN, CBO, RFC, WMC,
DEPTH) measures the extent to which features typical of
object-oriented systems are exploited (e.g. inheritance) or
achieved (e.g. lack of coupling and cohesion).

Tab. 2 reports a short summary of size metrics computed
on FFMM. Besides merely dimensional metrics such as the
Lines of Code (LOC), the Comment to Code Ratio measures
the percentage of comment lines with respect to the lines of
code. A value between 20% and 35% is considered
acceptable. Lower values are undesired, since they may
significantly affect the maintainability. Anyway, also higher
values (as in this case) are considered anomalous since they
are likely to be due to commented code rather than to useful
comments.

As far as the complexity metrics (Essential Complexity
and Cyclomatic Complexity) are concerned, the results
show that in FFMM there is space for improvement of the
considered quality characteristics (Tab. 3). In particular,
although the average complexities respect the heuristic
upper bounds, the maximum values exceed them in a
significant way. This implies that the complexity is
concentrated in few points that need to be simplified in
order to decrease the effort required for software testing and
maintenance.

Analogous remarks can be made from the analysis of the
object-oriented metrics (Tab. 4). All the metrics considered
have acceptable average values but most of them (LCOM,
FAN IN, CBO, RFC, WMC with the exception of DEPTH
and CDC) show maximum values significantly exceeding
the heuristic thresholds. For example objects showing a high
degree of coupling (CBO) are difficult to maintain and
reuse, classes with high cohesion (low LOCM) can probably

be splitted in subclasses, high WMC and RFC imply a big
effort for software development, learnability and
maintenance, and so on. Again, an acceptable average
quality level is partially compromised by some parts of the
software that need improvement interventions. Conversely,
the values of the FAN IN metric exceeding the threshold are
the result of a conscious design choice, since all the devices
implemented in FFMM inherit from two abstract classes.
These two classes are completely independent from each
other, therefore the multiple inheritance is not expected to
cause any undesired side effects.

4. CONCLUSIONS

This paper presents the results of the software quality
characterization of the release 3.0 of the Flexible
Framework for Magnetic Measurements. The
characterization was carried out with reference to the quality
model ISO 9126 developed by the International Standard
Organization. Both complexity and object-oriented metrics
were evaluated. Although the results highlighted an
acceptable average quality level, improvements are required
in order to decrease the maximum complexity and to exploit
more profitably the concepts of object-oriented
programming. Furthermore, only the internal quality of
FFMM source code was taken into account. As a
consequence, the quality assessment relates more to the
developer point of view than to that of the user. The
characterization will therefore be completed by
encompassing an evaluation of the external quality
(including performance, vital in real time measurement
applications) and the quality in use.

ACKNOWLEDGEMENTS

This work is supported by CERN trough the agreement
LHC/AT/K1464 with the University of Sannio, whose
support authors gratefully acknowledge.

REFERENCES

[1] D. Garvin, “What does “Product Quality” really
mean?”, Sloan Management Review, Fall 1984, pp.25-
45.

[2] B. Kitchenham, S. L. Pfleeger, “Software quality: the
elusive target”, IEEE Software, Issue 1, Vol. 13, pp.
12-21, 1996.

[3] I. Tervonen, P. Kerola, “Towards deeper co-
understanding of software quality”, Information and
Software Technology 39 (1998) 995-1003.

[4] ISO 8402 Quality Management and Quality Assurance
– Vocabulary, International Organization for
Standardization, Geneva, 2nd Edition, 1994.

[5] B. W. Boehm, J.R. Brown, M. Lipow, “Quantitative
Evaluation of Software Quality”, Proc. of the Second
Intern. Conf. on Software Engineering, pp. 592-605,
1976.

[6] N. E. Fenton, Software Metrics – A Rigorous
Approach, Chapman & Hall, 1991.

Table 3. FFMM 3.0 complexity metrics.

 Average Max Target
% OK

(program
units)

Essential Complexity
(Ev(G)) 1.2 19 ≤ 4 99

Cyclomatic
Complexity (v(G)) 2.4 40 ≤ 10 97

Table 4. FFMM 3.0 object-oriented metrics.

 Average Max Target % OK
(classes)

Class Depending
Child (CDC) FALSE FALSE FALSE 100
Class Depth
(DEPTH) 1 4 ≤ 7 100

Multiple Inheritance
(FAN IN) 0.7 2 ≤ 1 85

Response for Class
(RFC) 20 138 ≤ (WMC*

DEPTH)+1 45
Coupling between

Objects (CBO) 3.9 21 ≤ 2 50
Lack of Cohesion of

Methods
(LOCM/LCOM)

0.42 1 ≥ 0.75 40

Weighted Methods
for Class (WMC) 13 103 ≤ 14 74

[7] T. Gilb, Principals of Sofware Engineering
Management, Addison-Wesley, Reading, Mass., 1987.

[8] J. A. McCall, P.K. Richards, G.F. Walters, Factors in
Software quality, Vol. 1, 2, and 3, AD/A049-
014/015/055, Nat’l Tech. Information Service,
Springfield, Va., 1977.

[9] International Standard ISO/IEC 9126-1, “Software
Engineering – Product Quality – Part 1: Quality
Model”, International Organization for Standardization,
International Electrotechnical Commission, 2001.

[10] International Standard ISO/IEC 9126-2, “Software
Engineering – Product Quality – Part 2: External
Metrics”, International Organization for
Standardization, International Electrotechnical
Commission, 2003.

[11] International Standard ISO/IEC 9126-3, “Software
Engineering – Product Quality – Part 3: Internal
Metrics”, International Organization for
Standardization, International Electrotechnical
Commission, 2003.

[12] International Standard ISO/IEC 9126-4, “Software
Engineering – Product Quality – Part 4: Quality in Use
Metrics”, International Organization for
Standardization, International Electrotechnical
Commission, 2004.

[13] International Standard ISO/IEC 15939, “Software
Engineering – Software Measurement Process”,
International Organization for Standardization,
International Electrotechnical Commission, 2002.

[14] International Standard ISO/IEC 14598, “Software
Engineering – Product Evaluation”, International
Organization for Standardization, International
Electrotechnical Commission, 2000.

[15] R. Van Solingen, E. Berghout, The
Goal/Question/Metric Method. McGraw-Hill
Education, 1999.

[16] P. Arpaia, L. Bottura, M. Buzio, D. Della Ratta, L.
Deniau, V. Inglese, G. Spiezia, S. Tiso, L. Walckiers,
“A software framework for magnetic measurement at
CERN”, Proc. of IEEE Instrumentation and
Measurement Technology Conference, Warsaw,
Poland, May 1-3 2007.IMTC 07.

[17] Marc Eaddy, Thomas Zimmermann, Kaitlin D.
Sherwood, Vibhav Garg, Gail C. Murphy, Nachiappan
Nagappan, and Alfred V. Aho, "Do Crosscutting
Concerns Cause Defects?," IEEE Trans. on Software
Engineering, May 16, 2008.

[18] J. E. Beck, J. M. Reagin, T. E. Sweeney, R. L.
Anderson, T. D. Garner, “Applying a component-based
software architecture to robotic workcell applications”,
IEEE Trans. on Robotics and Automation, Vol. 16, N. 3
pp. 207-217, Jun. 2000.

[19] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Videira Lopes, J.M. Loingtier, J. Irwin, “Aspect-
Oriented Programming”, Proc. of the 11th European
Conference on Object-Oriented Programming
(ECOOP), Vol. 1241, pp. 220-242, Springer-Verlag,
1997.

[20] P. Arpaia, M. L. Bernardi, G. Di Lucca, V. Inglese, G.
Spiezia, “An Aspect Oriented Programming-based
approach for fault detection implementation in
automatic measurements systems”, in press on
Computer Standards & Interfaces.

[21] http://www.scitools.com/products/understand/
[22] http://www.dia.uniroma3.it/~torlone/sistelab/annipassat

i/sbavaglia.pdf
[23] V. A. French, “Establishing Software Metric

Thresholds”, Int. Workshop on Software Measurement
(WSM 99), Lac Supérieur, Canada, Sept. 1999.

[24] M. Lanza, R. Marinescu, S. Ducasse, Object-oriented
metrics in practice, Springer, Berlin, 2006.

[25] http://www.scitools.com/documents/metrics.php

	PagNum416: 416
	ISBN416: ISBN 978-963-88410-0-1 © 2009 IMEKO
	PagNum417: 417
	PagNum418: 418
	PagNum419: 419
	PagNum420: 420

