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Abstract − Calibration procedures are widely 

implemented in metrology. This paper considers the 

evaluation of measurement uncertainty associated with the 

use of a calibration function. Three methods for uncertainty 

evaluation are described and the differences in the results 

returned are discussed. A simple calibration function is used 

to illustrate these differences. 
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1.  INTRODUCTION 

Calibration is an essential part of many measurement 

problems and often involves fitting to measurement data a 

calibration function that best describes the relationship 

between an independent (stimulus) variable and a dependent 

(response) variable.  

The purpose of a calibration procedure is to determine 

estimates of the parameters of the calibration function on the 

basis of measurement data. The measurement data has 

associated uncertainty (and possibly covariance), which 

means that there will be uncertainty (and covariance) 

associated with the parameter estimates.  

Having obtained estimates of the calibration function 

parameters and evaluated their associated uncertainties and 

covariances, the calibration function may subsequently be 

used for prediction, where an observation of the response 

variable and its associated standard uncertainty are used to 

estimate the corresponding value of the stimulus variable 

and evaluate its associated standard uncertainty.  

In this paper, we consider three approaches to 

uncertainty evaluation related to the use of a calibration 

function: a) the GUM uncertainty framework [1], b) a 

Monte Carlo approach as described in GUM Supplement 1 

[2], and c) a Bayesian approach. Results are illustrated for 

the case of a cubic calibration function.  

2.  MODELS FOR CALIBRATION  

2.1 Functional model 

The calibration function is a functional model that 

describes the mathematical relationship between the 

stimulus and response variables. The functional model can 

be a physical, empirical or hybrid model. A physical model 

is one where there is a theory about how the variables 

depend on each other. An empirical model is one in which a 

relationship between the variables is expected or observed 

but without any supporting theory. A hybrid model has both 

physical and empirical components. We assume a functional 

model of the form ),(
�ξφη =  describing the response 

variable η  as a function of the stimulus variable ξ  and 

parameters .),,( T

1 nαα …=�
 

2.2 Statistical model 

We assume the measurement data ( ) ,,,1,, miyx ii …=  

arises according to the following statistical model: 

 ,,,1,),(, mieydx iiiiii …=+=+= �ξφξ  (1) 

where id and ie  are realizations of random variables. The 

statistical model is completed by making statements about 

the expectations (almost always taken to be zero), variances 

and covariances (often taken to be zero) of the random 

variables and, possibly, the probability distributions 

characterizing them. 

A common statistical model encountered in metrology is 

one where the uncertainties associated with the measured   

y-values are non-zero and those associated with the 

measured x-values can be regarded as negligible and all 

covariances are taken to be zero. Another is where the 

uncertainties associated with both the measured x- and y-

values are non-zero and all covariances are taken to be zero.  

3.  DETERMING THE CALIBRATION FUNCTION 

FROM DATA  

The aim of the calibration procedure is to determine 

estimates a of �  and the covariance matrix aV  associated 

with the estimates, given the measurement data and 

associated uncertainty information. The algorithm used to 

determine the estimates depends on the nature of the 

functional and statistical models [3]. For the case in which 

the functional model is linear in �  and the uncertainties and 

covariances associated with the estimates ix  of iξ  are all 

zero, the best estimates a are those that minimize 



 ( ) ,,1T �y�ffff y CV −=≡−  (2) 

with respect to the ,jα  where ),,( �iii xyf φ−=  C is the 

matrix of partial derivatives of first order jix αφ ∂∂ /),( �  of 

the model function with respect to the parameters ,
�

 

evaluated at ,ix  and yV is the covariance matrix associated 

with the iy  in (1).  

If  IV 2σ=y , then  

 ( ) ( ) ,,
1T2T1T −− == CCVCCC σaya  (3) 

that is, a is the solution of the normal equations derived 

from (2) and aV  is obtained using the general result for the 

relationship vw G=  that .TGVGV vw =  If we make the 

further assumption that  

 ),),,(N( 2σφ �
ii xy ∈  (4) 

meaning that iy  is a draw from the indicated distribution, 

then ).,N( a

�
a V∈  From a Bayesian point of view, assuming 

an uninformative prior ,1)( ∝�
p  the posterior distribution 

for ,
�

 given the measurement data, is ).,N( aa V  

4. USING THE CALIBRATION FUNCTION 

We suppose that estimates a of 
�

 and associated 

covariance matrix aV  have been determined. Given an 

observed response value y generated according to the model 

 ,),( ey += �ξφ  (5) 

where e is a realization of a random variable with 

expectation zero and variance ,
2σ  what is the best estimate 

x of ξ  and its associated uncertainty? In the absence of any 

further information we invoke the principal of maximum 

entropy to characterize the random variable of which e is a 

realization by ),0N( 2σ  [2].  

The uncertainty associated with x will have two 

contributing factors: the uncertainty associated with the 

observed response value and the uncertainties and 

covariances associated with the estimates of the calibration 

function parameters. We give three approaches to answering 

the above question: the GUM uncertainty framework [1], the 

GUM Supplement 1 (GUMS1) approach [2] and a Bayesian 

approach. We note here that the GUMS1 and Bayesian 

approaches use distributional information while the GUM 

approach can be implemented on the basis of knowing only 

expectations, variances and covariances. 

4.1 GUM uncertainty framework  

In the GUM uncertainty framework the best estimate of 

ξ  is the x that solves ).,( axy φ=  This equation implicitly 

defines x as a function of y and a. The GUM uncertainty 

framework requires the calculation of the sensitivity 

coefficients for x with respect to y and the parameters a. 

Using a linear approximation, the calculations show that the 

standard uncertainty )(xu  associated with the estimate x is 

given by  

 ,)()( T22

2

aaa cc Vyuxu
x

+=
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where 

T

1
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α
φ
…ac  is the vector of partial 

derivatives of first order of the model function with respect 

to the parameters ,
�

 evaluated at x, and x∂∂ /φ is the partial 

derivative of first order of the model function with respect to 

the stimulus quantity parameter, evaluated at x and .
�

 

Equation (6) makes clear the contributions arising from y 

and a.  

4.2 GUM Supplement 1 approach 

The Monte Carlo approach described in GUMS1 

requires draws qy  and ,qa  for q = 1, …, M, to be made 

from the distributions assigned to y and a. The 

corresponding values qx  satisfying ),( qqq xy aφ=  are then 

calculated. The values ,qx  q = 1, …, M, constitute a discrete 

representation of an approximation to the probability 

distribution for .ξ  Statistics, namely the mean and standard 

deviation, are calculated for the M values qx  giving values 

for, respectively, the estimate of ξ  and its associated 

standard uncertainty. Coverage intervals can also be 

calculated corresponding to prescribed coverage 

probabilities. 

Whereas the GUM uncertainty framework approach 

assumes that a linear approximation to the model is 

sufficient, the Monte Carlo method makes no such 

assumption. It is therefore likely that the uncertainties 

returned by the GUM and Monte Carlo approaches will be 

different if nonlinearities are significant relative to the 

magnitudes of the uncertainties involved.  

4.3 Bayesian approach 

The Bayesian approach calculates a posterior distribution 

)|( yp ξ  for ξ  based on the observed response y, the 

knowledge )(
�

p  about 
�

 gained from the prior calibration 

exercise and any prior information about ξ  given in terms 

of a distribution ).(ξp  Applying Bayes’ Theorem  

 ),()(),|()|,( ξξξ ppypyp
��� ∝  (7) 

the required distribution is given by marginalization, namely 

 ,d)|,()|(
��

ypyp ξξ ∫Ω=  (8) 

where Ω  represents Euclidean n-space. 

 Markov chain Monte Carlo (MCMC) techniques [4, 5] 

can be used to generate samples from )|,( yp
�ξ  from 

which an estimate, standard deviation and coverage interval 



can be calculated in the same way as for the GUMS1 

approach.  

 For the case of linear models, the marginalization in (8) 

can be performed analytically (see annex A for details). 

Suppose 
�

c
�

)(),( T ξξφ =  expresses ),(
�ξφ  as a linear 

combination of basis functions. If 

),),,((N~,| 2σξφξ ��
y  ),(N~ aa

�
V  and ,1)( ∝ξp  

then 
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ξσ
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ξσ

ξ acy
yp   (9) 

with ).()()( T22 ξξσξσ cc aV+=  Equation (9) expresses the 

posterior distribution for ξ  in terms of the calibration 

information a and aV  and the basis function values ).(ξcc ≡  

The constant of integration can be determined by numerical 

quadrature.  

5. EXAMPLE: CUBIC CALIBRATION FUNCTION 

We illustrate the behaviour of the three approaches for a 

calibration function of the form 

 .),( 3

321 ξαξααξφη ++== �
 (10) 

Calibration data has been simulated according to the model 

(4). Fig. 1 shows example data and the fitted calibration 

function for parameter vector T)1,1,0(=�
 and .2.0=σ  

The expanded uncertainties associated with the iy  are 

illustrated by vertical bars, centred on iy  and having 

extremities σ2−iy  and .2σ+iy  
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Fig. 1.  Cubic calibration function generated from simulated data. 

Given an observed response value ),),,((N 2σξφ �∈y  the 

three methods described in section 4 are used to provide an 

estimate x of ξ  and its associated standard uncertainty 

).(xu  In the current context, the GUMS1 approach assumes 

that the quantities of which y and a are realizations are 

characterized by normal distributions ),(N 2σy  and 

),,(N aa V  respectively. The Bayesian approach is 

implemented using (9) with ).,,1()( 3T ξξξ =c  A MCMC 

sampling method based on a version of the Metropolis-

Hastings described in [5] has also been implemented. 

The set of values returned by the GUMS1 and MCMC 

approaches may be assembled into histograms forming 

frequency distributions that, when normalized to have unit 

area, provide approximations to the probability density 

functions (PDFs) for .ξ   

Figs. 2 and 3 show the results of example calculations 

for two response values y and σ = 0.2. For both cases the 

three distributions are different. The Bayesian and GUM 

distributions have the same mode given by the ξ  that solves 

).,( aξφ=y   
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Fig. 2. Distributions for ξ  from the three uncertainty evaluation 

methods and MCMC for 5.0=y and .2.0=σ  
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Fig. 3. As Fig. 2 but for .2.0−=y  



6. DISCUSSION 

 The GUMS1 and Bayesian approaches clearly provide 

different distributions in the example of section 5. The 

differences between the distributions can be related to the 

roles of the observation equation and the measurement in the 

GUM [7]. From a Bayesian point of view, the difference can 

be described as follows. The observation model 

)),,(N( 2σξφ �∈y  describes how the measurement process 

can produce an observation and specifies the probability 

),|(
�ξyp  of observing y, given parameter values ξ  and 

.
�

 We write ),),,((N~,| 2σξφξ ��
y  regarding y as the 

variable and ξ  and 
�

 as given. The data from the 

calibration experiment provides a distribution for ,
�

 namely 

).,(N aa V  This distribution is the distribution posterior to 

gathering the calibration data, but we now regard it as the 

distribution prior to observing a response. Given a prior 

distribution )(ξp  for the stimulus variable ,ξ  Bayes’ 

theorem (7) and (8), defines the posterior distribution 

)|( yp ξ , where now ξ  is regarded as the variable and y the 

fixed (observed) response value. Bayes’ theorem can be 

regarded as probabilistic inversion, converting information 

about how an observation can arise to information about the 

system that gave rise to the observation.  

 The GUM approach is to recast the observation equation 

as the measurement function. The equation ),(
�ξφη =  

implicitly defines ),(
�ηψξ =  as a function of η  and .

�
 

We term this “functional inversion” as opposed to 

“probabilistic inversion”. By assigning distributions to η  

and 
�

 on the basis of the measured response y and the 

calibration experiment, the relation ),(
�ηψξ =  defines a 

distribution for .ξ  The GUM methodology implicitly 

propagates the distributions for η  and 
�

 through to that for 

ξ  using the law of propagation of uncertainty based on first 

(or second) order approximations, while GUMS1 uses a 

Monte Carlo method, without any approximating 

assumptions. For both GUM and GUMS1 calculation 

methods, η  is assigned the distribution ),N( 2σy  and 
�

 

the distribution ).,(N aa V  In the GUM approach, the best 

estimate of ξ  is given by ).,( ayx ψ=  The distribution 

assigned to η  represents the predicted distribution of the 

responses for repeated measurement of the same stimulus 

using the same instrument. The propagation methodology 

provides a method for approximating the distribution of 

estimates ξ~  that would be returned if the same calibration, 

measurement, and estimation procedure were repeated many 

times for the same artefact and using the same instrument. 

That is, the methodology provides an approximation for the 

distribution ),,|
~

( 00 a
� == xp ξξ  where 0x  and 0a  are 

candidate values for ξ  and .
�

 In this sense, the 

GUM/GUMS1 methodology is aimed at characterizing the 

behaviour of the measuring system [8]. The candidate values 

usually chosen are those arising from the calibration and 

response measurement, a and ).,( ayx ψ=  

The differences in the GUM/GUMS1 and Bayesian 

approaches can be analyzed more straightforwardly if the 

calibration parameters ,)1,1,0( T

0 =�
 say, are known with 

negligible uncertainty. In this case, the uncertainty 

associated with the stimulus arises solely from the 

measurement of the response 3

0 ),( ξξξφη +== �
 

modelled as .)),,(N( 2

0 σξφ �∈y  The estimate x of ξ  can 

be written implicitly as a function ),( 0

�
yx ψ=  of y. Given 

an observed y, the GUMS1 approach (as interpreted above) 

assigns the normal distribution ),N( 2σy  to “best estimate” 

y and propagates this distribution through to “best estimate” 

x via the function ).,( 0

�
yψ  From a Bayesian point of view, 

the assignment of the normal distribution to y is only 

justified if the prior distribution for observing y is uniform, 

that is, before the experiment is performed there is an equal 

probability of the response variable taking any value 

between –1 and 1, say. By contrast, the Bayesian approach 

(as interpreted above) assigns a uniform prior distribution to 

the stimulus variable.  

Since the cubic calibration function is monotonic 

increasing, the relationship ),( 0

�ξφη =  represents a 

re-parameterization. A state-of-knowledge distribution for 

ξ  defined by a PDF )(ξp  defines a PDF )(ηp  with 

η
ψξη

d

d
pp )()( =  and .)()(

ξ
φηξ

d

d
pp =  

The assignment of a prior for the response implies a 

prior for the stimulus and vice versa.  In particular, a 

uniform prior for the response assigns the quadratic prior 

)(31)( 2 ξφξξ ′=+∝p  for the stimulus. The effect of this 

quadratic prior can be seen in Figs. 2 and 3. The effect is 

more pronounced for larger .σ  Fig. 4 shows the Bayesian 

and GUMS1 distributions for σ = 0.5 and y = 0.0 and 0.5.  
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Fig. 4. Bayesian (solid) and GUMS1 (dotted) distributions for 

ξ associated with responses y = 0.0 (left hand pair) and 0.5 (right 

hand pair). 



For this example, the GUMS1 distribution can only be 

interpreted as a state-of-knowledge distribution for the 

stimulus variable, posterior to the measurement data, if we 

believe the quadratic distribution summarizes the prior 

information available about the stimulus variable.  This is 

unlikely to be the case; for example, it implies that the 

nominal value is the least probable value for the stimulus 

variable. More generally, assigning a uniform prior to the 

response variable is equivalent to assigning a prior 

)()( ξφξ ′∝p  for the stimulus variable. For the case of a 

linear calibration function, the slope is constant and the 

stimulus variable is also associated with a uniform prior.  

From a practical point of view, the differences in the 

GUM uncertainty framework, GUMS1 approach and 

Bayesian approach become apparent only when the 

uncertainty associated with the response measurement is 

appreciable relative to the curvature in the calibration 

function. In the numerical example considered in section 5, 

the standard uncertainty associated with the response 

measurement is approximately 10 % of the response range. 

If this standard uncertainty is reduced to 1 % of the range, 

the differences become negligible and a GUM uncertainty 

evaluation should be sufficient for practical purposes.  

The computational requirements of the three evaluation 

schemes for obtaining the uncertainty associated with a 

measured value of the response are different. The GUM 

uncertainty framework requires the evaluation of a formula, 

the Bayesian approach requires one-dimensional numerical 

quadrature (for a linear model), while the GUMS1 approach 

requires a Monte Carlo calculation. If the standard 

uncertainty associated with the measured response value is 

known a priori, then means, standard uncertainties and 

coverage intervals can be calculated beforehand and stored 

for all three methods. Given a particular measured response 

value, the associated uncertainty information can be read 

from the stored calculations. Fig. 5 gives 95 % coverage 

intervals for the Bayesian and GUM approaches along with 

the mean of the distributions for the Bayesian distributions. 

The fact that the mode and mean for the distributions are 

generally different bring to the fore the question of what 

should be returned as the “best estimate” of the stimulus 

variable.  

7. CONCLUSIONS 

We have described GUM, GUMS1 and Bayesian 

methodologies for evaluating the uncertainty associated with 

the value of the stimulus variable corresponding to a 

measured value of the response variable.  These 

methodologies take account of the uncertainties associated 

with the determination of the calibration function. For many 

practical situations, all three methods will give results that 

do not differ appreciably from each other. The GUM 

uncertainty framework uses linearizing approximations that 

can limit the validity of the results.  Two alternative 

evaluation methods, the GUMS1 and Bayesian approaches, 

have been considered. Neither method relies on the 

linearizing approximations that form the basis of the GUM 

uncertainty framework. However, the two methods involve 

different distributions. The GUMS1 approach follows the 

GUM’s use of the measurement function, a functional 

inversion of the observation equation, which allows the 

uncertainty to be evaluated using an implementation of the 

propagation of distributions. The propagated distribution 

characterizes the behaviour of the measuring system. From 

this point of view, the GUM approach makes an assumption 

of underlying normality, but the GUMS1 approach makes 

no such assumption. The Bayesian approach depends 

directly on the observation equation and uses probabilistic 

inversion to provide a state-of-knowledge distribution for 

the stimulus variable. In cases where the two distributions 

are different, it is important that inferences based on one or 

other of the distributions are made carefully. One of the 

issues arising in the revision of the GUM, now under way, is 

the role of the observation equations and measurement 

function in uncertainty evaluation. 
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Fig. 5. Mode and 95 % coverage intervals based on a Bayesian 

uncertainty evaluation (solid). The GUM coverage intervals are 

given by the dotted curves. The dashed curve is the mean of the 

Bayesian distributions.   
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ANNEX A 

Suppose 
�

c
�

)(),( T ξξφ =  expresses ),(
�ξφ  as a linear 

combination of basis functions. If 
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�
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If  aV  is factored as ,)( 1T −= aaa RRV  
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With ξ  fixed, let )(ˆˆ ξaa ≡  minimize ( ) ( )�z
�

z DD −− T
 

with respect to 
�

 so that 

( ) ( ) =−− �z�z DD
T
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�
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Since 
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we have 
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2
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 −−−∝ azaz DDyp ξ    (A6) 

where )(ξDD ≡  and )(ˆˆ ξaa ≡  depend on .ξ   

Continuing the analysis, ,)()(
1 1T

2

T −+= acc VDD ξξ
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and ),(2T ξσ∝DD  where ).()()( T22 ξξσξσ cc aV+=  It 

can be shown that 
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so that (A6) simplifies to  
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with ).()()( T22 ξξσξσ cc aV+=  

REFERENCES 

[1] JCGM, Evaluation of measurement data — Guide to the 

expression of uncertainty in measurement, Joint Committee 

for Guides in Metrology, JCGM 100:2008. 

[2] JCGM, Evaluation of Measurement Data — Supplement 1 to 

the ‘Guide to the expression of uncertainty in measurement’ 

— Propagation of distributions using a Monte Carlo method, 

Joint Committee for Guides in Metrology, JCGM 101:2008. 

[3] M. G. Cox, A. B. Forbes, P. M. Harris and I. M. Smith, The 

classification and solution of regression problems for 

calibration, NPL Report CMSC 24/03. 

[4]  A. Gelman, J. B. Carlin, H. S. Stern and D. B. Rubin, 

Bayesian Data Analysis, Chapman & Hall/CRC, Boca 

Raton, 2004. 

[5] A. B. Forbes, Least squares methods and Bayesian inference, 

In F. Pavese et al., editors, Advanced Mathematical and 

Computational Tools in Metrology and Testing (AMCTM 

VIII), pp. 103-111, World Scientific, Singapore, 2009. 

[6] M. G. Cox, G. Rossi, P. M. Harris and A. B. Forbes, “A 

probabilistic approach to the analysis of measurement 

processes”, Metrologia, vol. 45, nº. 5, pp. 493-502, 2008. 

[7] C. Elster and B. Toman, “Bayesian uncertainty analysis 

under prior ignorance of the measurand versus analysis using 

the Supplement 1 to the Guide: a comparison”, Metrologia, 

vol. 46, nº. 3, pp. 261-266, 2009. 

[8] A. Possolo and B. Toman, “Assessment of measurement 

uncertainty via observation equations”, Metrologia, vol. 44, 

nº. 6, pp. 464-475, 2007. 

 

 

 

 


	PagNum2346: 2346
	ISBN2346: ISBN 978-963-88410-0-1 © 2009 IMEKO
	PagNum2347: 2347
	PagNum2348: 2348
	PagNum2349: 2349
	PagNum2350: 2350
	PagNum2351: 2351


