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Abstract − A method for the reconstruction of a 3D 

shape is described and applied to a practical measurement 
case. Multiple stereo systems are employed to measure a 3D 
surface with superimposed colored markers. The described 
procedure comprises a detailed uncertainty analysis of all 
the measurement phases, and a statistical compatibility 
analysis of the colored markers measured by different stereo 
pairs. The compatible acquired markers are statistically 
merged in order to obtain a measurement of a 3D shape and 
an evaluation of the associated uncertainty. The obtained 
results show that the selected experimental set-up allows to 
considerably reduce the uncertainty associated to the fused 
points. The selection of a limit distance, that divides 
compatible points from not compatible ones, is also 
presented. 

Keywords: multiple stereo systems; uncertainty 
evaluation; 3D shape reconstruction. 

1.  INTRODUCTION 

3D shape reconstruction using vision systems is a 
technique widely used to reconstruct spatial objects and a lot 
of algorithms and methods are available in literature. The 
use of multiple pairs of cameras allows the reconstruction of 
different portions visible by each pair, and then their fusion 
to obtain the complete shape. In this way each pair can be 
optimized for its interest region, increasing thus the 
accuracy of each partial reconstruction. Several methods can 
be used to match the information on different cameras: 
shape detection, edge detection, correlation analysis of 
different portions of the image, marker matching in the two 
views or others. For instance, [1] describes a method for 
surface reconstruction that employs a Lagrangian 
polynomial for surface initialization and a quadratic 
variations method to improve the results. [2] recovers a first 
approximation of the shape through the object silhouettes 
seen by the multiple cameras and then improves the shape 
through a carving approach, employing local correlation 
analyses between images taken by different cameras. This 
approach relies on the hypothesis that, if a 3D point belongs 
to the object surface, its projection into the different cameras 
which really see it will be closely correlated. In [3] a method 
for spatial grouping of 3D points viewed by multiple stereo 
systems is presented. The grouping algorithm comprises a 

3D space compressing step in order to map the 3D points 
into a space of even density that allows an easier grouping 
through a neighborhood approach; a subsequent 
uncompressing step preserves the adjacencies of the 
compressed space and helps the fusion of grouped points 
seen by different cameras. 

One of the most important aspects of the reconstruction 
is the fusion of data coming from different stereo pairs, as 
some portions of the object may not be visible from one or 
more pairs. The process of merging images requires the use 
of techniques to decide whether points should be merged or 
not. One promising method is associating uncertainty to 
each reconstructed point of each pair and making decisions 
relying also on this information. 

A drawback of the approaches cited above is that they do 
not evaluate the uncertainty of the reconstructed object. If a 
multiple stereo system is used to perform measurements, it 
is highly recommended to evaluate a region of confidence of 
the measured 3D points or objects, with a desired level of 
confidence. The method described in this work employs a 
detail uncertainty analysis with two goals: merging the 
measurement performed with different stereo pairs and at 
the same time obtaining the uncertainty associated with the 
measured quantities. 

Each step of the measurement process is affected by 
uncertainty that propagates to the final 3D reconstructed 
model and may de-qualify the results obtained. Uncertainty 
derives from a multitude of causes, such as noise in the 
image acquisition, defocusing, evaluation of the intrinsic 
and extrinsic parameters of the cameras, depth estimation of 
the physical point, choice of the points to merge and 
merging method for the final fusion of 3D parts.  

In [4] an uncertainty analysis is presented for a binocular 
stereo reconstruction, but a method to compare and fuse the 
measurements of different stereo pairs is not described. A 
method to fuse the measurements of different stereo pairs is 
described in [5]. In this case, however, the uncertainties 
associated with the intrinsic and extrinsic camera calibration 
parameters are neglected, and a simplified geometrical 
uncertainty propagation algorithm is employed. In the 
present work, particularly for multiple stereo fusion, a 
detailed uncertainty analysis is performed using the general 
method described in the GUM [6] and its supplement 1 [7]. 
Furthermore, the described procedure includes a statistical 



compatibility analysis, performed before the fusion of 
different stereo pairs. 

The reconstruction presented is based on the acquisition 
of colored markers superimposed on the shape to be 
reconstructed by means of pairs of cameras; the centroid of 
each marker is detected on each camera and matching 
position of markers is performed using both epipolar 
geometry and color matching to improve robustness of 
matching. Depth evaluation is done for each pair, and the 
compatibility of the points measured by different stereo 
pairs is analyzed; eventually, the fusion of compatible points 
is performed on a common reference frame for all cameras.  

The steps of uncertainty evaluation described in the 
following allow to associate a covariance matrix with each 
3D point reconstructed by each stereo pair. The information 
contained in the uncertainty ellipsoid is the basis for 
verifying the compatibility of 3D points acquired by 
different stereo pairs, for merging compatible points and 
estimating their uncertainty. Using such a process, each 
point reconstructed in the 3D space is not only identified by 
its coordinates, but also is associated with an uncertainty 
ellipsoid deriving from the whole reconstruction process. 
This information is necessary for points interpolation using 
surfaces to minimize a cost function that takes into account 
not only point positions, but also point uncertainties, 
improving significantly final results. 

In the following sections, the employed method is first 
described (sections 2-5) with a detailed uncertainty analysis 
and then it is applied to the measurement of a 3D shape with 
superimposed colored markers; some laboratory results are 
presented in section 6. 

2.  STEREO CAMERA MODEL 

As described in [8], a stereo system comprises two 
cameras 1 and 2 and each camera has a corresponding frame 
of reference having the z axis aligned with the optical axis (a 
figure will be added in the final version of the work). Taking 
into consideration the model of each camera, it is possible to 
write the generic position of a point feature comprised in the 
field of view of both cameras: 

        (1) 

where i can be 1 or 2, depending on which camera is 
taken into account; (or ) is the point position 
expressed in the frame 1 (or 2) associated with camera 1 (or 
2); (or ) is the projection of the point (or ) 
using an ideal camera aligned as the camera 1 (or 2) and 
having focal length equal to 1 (in length units); is a 
scalar parameter associated with the depth of the point. 

Each camera is characterized by a set of intrinsic 
parameters that are evaluated during camera calibration, as 
described below in the calibration uncertainty section, and 
define the functional relationship between the projection , 
expressed in length units, and the projection , expressed 
in pixels ( and are respectively the number of columns 

and the number of rows from the upper left corner of the 
sensor); using an ideal pinhole camera it is possible to find 
out the following direct model: 

  (2) 

where ; ;  along 

axis (not );  along axis (not ); 

is the focal length in length units; , are the 
distances (respectively in pixel columns and rows) between 
the upper left corner and the principal point (intersection of 
the optical axis with the sensor). 

3. TRIANGULATION 

If both cameras of the stereo system are calibrated, it is 
possible to measure the 3D position of a feature point in 
space using a triangulation algorithm. In this paper, the 
algorithm of the middle point is used for triangulation. In 
theory, when a point feature in space  is acquired by both 
cameras, the preimage lines that project the point into the 
sensors should intersect in the point  itself. In practice, 
due to measurement uncertainty, the acquired preimage lines 
does not intersect each other. Thus, the employed algorithm, 
starting from the projected points , finds the 3D points 

,  with the minimum distance and belonging 
respectively to the preimage lines of camera 1 and 2. Points 

 , define a segment orthogonal to the two skew 
preimage lines. The middle point  of this segment is 
selected as the measured 3D point of the feature. 

4. UNCERTAINTY ANALYSIS 

In the triangulation algorithm, the triangulated point 
is computed from the values of the following quantities: 

1)  (i=1,2) which are the projections of the 3D point  in 
the cameras 1 and 2, and are supposed to be known from 
measurement (the evaluation of the uncertainty of is 
described the following 4.2 subsection); 2) , ; , 

, which are the intrinsic calibration parameters of 

cameras; 3)  which are the origin positions of the 
camera frames; 4) , , , which are the Euler angles 
defining the rotation of the camera frame i with reference to 
the world frame. , , ,  are the extrinsic 
calibration parameters of cameras. Both intrinsic and 
extrinsic parameters with their uncertainties are evaluated by 
calibration as described in the following 4.1 subsection.  



4.1 Calibration uncertainty  
The parameters previously defined in the camera model 

are estimated through camera calibration. The procedure that 
is employed is similar to the one proposed by Tsai, see [9], 
with a planar target which translates orthogonal to itself, 
generating a three-dimensional grid of calibration points. At 
a first step the parameters are obtained using a pseudo-
inverse solution of a least-squared problem employing 
points on the calibration volume and image points. After this 
first estimation of the intrinsic and extrinsic parameters, an 
iterative optimization is performed in order to minimize the 
errors between acquired image points and the projections of 
the 3D calibration points on the image plane using the 
estimated parameters. 

Before using the algorithm of calibration , optical radial 
distortions are estimated and adjusted by rectifying the 
distorted images. Radial distortion coefficients are estimated 
by compensation of the curvature induced by radial 
distortion on the calibration grid [10].  

The camera parameter uncertainties are evaluated 
propagating the uncertainties of the 3D calibration points 
and those of image points, see [4], [9]. The propagation is 
performed by a Monte Carlo simulation. 

The reasons of deviation between measured image points 
and the projection of 3D calibration points on the image 
plane are various: simplification of camera model, camera 
resolution, dimensional accuracy of the calibration grid, 
geometrical and dimensional accuracy of grid translation. 
Considering that the motion of the grid to generate a 
calibration volume is not perfectly orthogonal to the optical 
axis of the camera, a bias is induced in the uncertainty 
distribution of the grid points and so the uncertainty 
becomes not symmetric. In order to take this into account, 
other two parameters are introduced to characterize the 
horizontal and vertical deviation from orthogonality. 

4.2 Matching uncertainty  
The point X in the 3D space is defined as a centroid of a 

circular marker; for this reason the determination of the 
projection on the CCD of the point X is always affected 
by uncertainty. Firstly the digitalization and successive 
binarization of the image deforms the circular shape in a 
polygonal shape and the centroid of these two shapes is not 
the same. Secondly the marker, that was originally a circle, 
is deformed in order to adhere to the surface of the target; as 
a first approximation, the deformed marker can be expressed 
by an ellipse. Thirdly, due to the perspective effects, an 
ellipse that is not perpendicular to the optical axis of the 
camera is projected on the CCD as an ovoid. 

A simplified model for the perspective geometry 
identifies each marker projection as an ellipse; a method to 
fit this ellipse is the use of the covariance matrix of the 
distribution of the pixels recognized as marker. Then, it is 
possible to compare the projected marker with the 
corresponding covariance ellipse (estimated at a set 
confidence) and to compute two parameters  ,  

that express the “difference” between the projected ovoid 
and the estimated ellipse;  and  are respectively 

the mean vector and the standard deviation of the distance 
between the edge points of the projected marker and the 
covariance ellipse at 99% of confidence. 

The uncertainty of the computed ellipse centroid is 
considered a function of these two parameters: 

  

The larger is the difference between the projected ovoid 
and the estimated ellipse and the larger is the uncertainty 
associated with the computed centroid. This function is 
evaluated by a calibration procedure, which comprises the 
variation of the marker orientation and position of known 
steps using a planar marker and a marker adherent to a 
cylindrical lateral surface. 

4.3 Uncertainty propagation 
The uncertainty evaluation for the triangulated point 
 becomes an uncertainty propagation problem, which 

employs the functional model between input quantities 
( , , ; , , , , , ) and output ones 
(three components of ): 

 
    (2) 

 
 with i=1,2. 
Different uncertainty propagation methods are known. 

All of them are based on an information representation 
theory (i.e. probability or possibility or evidence theory), 
and uses a corresponding means for uncertainty expression 
(i.e. probability density functions or fuzzy variables or 
random-fuzzy variables). According to the GUM [6], in this 
work, the uncertainty is analyzed using the probability 
theory and is expressed by probability density functions 
(PDFs). In order to calculate the propagated uncertainty of 
the triangulated position  taking into account the 
contributions of all uncertainty sources that may contribute, 
the method based on the formula expressed in the GUM [6] 
is used. This method is selected, instead i.e. of the Monte 
Carlo propagation approach to increase the computation 
speed and to allow a real time implementation. The 
propagation formula uses the sensitivity coefficients 
obtained by linearization of the mathematical model; this 
method is based on the hypothesis that a probability 
distribution, assumed or experimentally determined, can be 
associated to every uncertainty source considered, and that a 
corresponding standard uncertainty can be obtained from the 
probability distribution. 

The GUM proposes a formula for the calculation of the 
uncertainty to be associated with the output quantities , 
obtainable as an indirect measurement of all input 
quantities: ; where is the 
covariance matrix associated with the input quantities, 
which are 24 in this application; is the 
covariance matrix associated with the output quantities, 
which are the three components of ; is the 



matrix of the sensitivity coefficients achievable from partial 
derivatives of f() with respect to input variables: 

 

 

In this application, the following assumptions are made: 
a) The two components of  of each camera are 

assumed cross-correlated among themselves 
and not correlated with all other input 
quantities; 

b) The intrinsic calibration parameters of each 
camera are assumed cross-correlated among 
themselves and not correlated with the 
corresponding parameters of the other camera 
and all other input quantities; 

c) The extrinsic calibration parameters of each 
camera are assumed cross-correlated among 
themselves and not correlated with the 
corresponding parameters of the other camera 
and all other input quantities; 

With these assumptions it is possible to build the 24x24 
covariance matrix of input quantities putting six reduced 
dimension covariance matrices along the diagonal of 

and assigning zero values to all other elements of : 
 

 

 
where is associated with the measurement 

of camera 1; is associated with the 

measurement of camera 2; is associated 
with the intrinsic parameters  of camera 1; 

is associated with the intrinsic parameters 

 of camera 2; is associated 

with the extrinsic parameters  of camera 1; 

is associated with the extrinsic parameters 

 of camera 2. 
The propagation model between input and output 

quantities described in section 3, although not very simple, 
exhibits the advantage of being explicit. Thus, it is possible 
to compute explicitly the sensitive coefficients as symbolic 
expressions, and it is not necessary to numerically evaluate 
them as it often happens with complex applications. 

5. COMPATIBILITY ANALYSIS 

In not ideal conditions the stereo systems at different 
positions provides different measurements of the same 
feature (like the center of mass of a colored spot on surface). 
Each measurement comes with its uncertainty and a fusion 
process is suitable to combine them in a unique best 
estimated one with the associated fused uncertainty. Before 
fusing points measured from different stereo systems, it is 
necessary to state if they are associated to the same feature 
or, statistically speaking, if they belong to the same 
distribution. Therefore a compatibility analysis of the 
measured points is performed. A compatibility test on two 
points ,  with covariances ,  is based on the 
consideration that the difference  is distributed with 
zero mean and covariance . On Gaussian 
assumption, the Mahalanobis Distance (MD) 

 has a  
distribution with a degrees of freedom  equal to the 
dimension of vectors . Chosen a confidence level  it is 

stated that the two points are compatible if . 
Let  be the i-th 3D point measured by the stereo system 
m with covariance . The analysis is made up of the 
following steps: from measured points sets  and of 
stereo system m and n respectively, for each , it is 
associated with the point of  having the minimum MD to 

; if the compatibility test is passed, the association is 
accepted and the associated couple is fused obtaining the 
best estimate: 
 

 
And its covariance matrix: 
 

 
 
otherwise  is kept as best estimate of the feature; the 
process between all the best estimates just obtained is 
iterated (including the points not associated of the two sets), 
and a new set is obtained. Ambiguous cases can occur, 

when one point of set is compatible with two or more 
points of set . The threshold has to be tuned in order 
to both keep low the ambiguity cases and not to lose useful 
information. 

6. EXPERIMENTAL RESULTS 

An inclined can provided with colored markers on its lateral 
surface and positioned by a Cartesian robot, is acquired by 
two stereo systems, which are angularly spaced apart of 
nearly 90°, as illustrated in Fig.1. Starting from an initial 
position the can is translated along a straight trajectory to a 
final position and the markers on its surface are acquired 



both in the initial and final position. In Fig.2 it is possible to 
see the two acquired positions.  

 
Fig. 1: Picture of the two stereo systems employed for the 

compatibility analysis. 

 
Fig. 2: Sets of points acquired in the two positions. 

The acquired colored markers yield two sets of points , 
, whose compatibility is analysed as described in section 

5. The minimum Mahalanobis distance between each point 
of  and all points of  is depicted in Fig.3 for the first 
position; very similar results are obtained for the second 
position.  

 
Fig. 3: Minimum Mahalanobis distance between each point 

acquired by the first stereo system and all points acquired by the 
second stereo system in the first position of the can. 

Fig.3 shows that in the considered case of stereo systems 
spaced apart of 90°, there is a wide range (about from 1.7 to 
5.6) of selectable limit distance (which divides compatible 

and not compatible points), if the minimum distance 
between a point of  and all points of is considered. In 
this work, with a selected level of confidence equal to 
68.3% and three degrees of freedom, a limit distance equal 
to 1.88 is obtained. Fig.4 depicts two points belonging 
respectively to the sets , , and having a Mahalanobis 
distance equal to 5.9 which means the two points are 
considered not compatible. The following two Figs. 5 -6 
illustrate two examples of compatibility: a distance of 0.61 
which means very good compatibility (Fig.5) and a distance 
of 1.54 which is associated to a poor compatibility (Fig.6).  
 

 
Fig. 4: Example of points acquired by different stereo systems with 

Mahalanobis distance equal to 5.9 (not compatible). 

 
Fig. 5: Example of points acquired by different stereo systems with 

Mahalanobis distance equal to 0.61 (very good compatibility). 

 
Fig. 6: Example of points acquired by different stereo systems with 

Mahalanobis distance equal to 1.54 (poor compatibility). 



If the Mahalanobis distance between a point of  and all 
points of is analyzed (instead of the minimum distance 
as performed in Fig.3), there are cases that can lead to an 
ambiguous situation: the minimum distance (0.81 in Fig.7) 
is widely less than the limit distance, but the there is also 
another point in with a distance from the considered 
point of  which may be less or similar to the limit 
distance (2.53 in Fig.7). As already stated, in this work the 
selected limit distance is 1.88, which allows to avoid these 
ambiguous situations. 

 
Fig. 7: Example of points acquired by different stereo systems with 

Mahalanobis distance equal to 0.81 (compatible) and 2.53 (not 
compatible). 

 
Fig. 8: Picture of the two stereo systems employed for the 

compatibility analysis. 

For the initial position of the can, Fig.8 shows the set, 
comprising the fused compatible points and also the points 
of  and  that are not compatible. From Fig.5, Fig.6, 
Fig.8, it is clear that the uncertainty associated with the 
fused points is significantly reduced with reference to the 
uncertainties obtained from a single stereo system. This 
useful result is particularly true for the two considered stereo 
systems, since they are angularly spaced apart of 90°. 

CONCLUSIONS 

This work presented a method for the reconstruction of a 
3D shape with superimposed colored markers by means of 
multiple stereo systems. A detailed uncertainty analysis of 
the whole method and a statistical compatibility analysis of 
3D points acquired by different stereo pairs were included. 
The described method allows to statistically merge the 
measurements of different stereo pairs in order to obtain a 
measurement of a 3D shape and an evaluation of the 
associated uncertainty. The results showed that positioning 
the two stereo systems spaced apart of 90° allows to 
considerably reduce the uncertainty associated to the fused 
points. The selection of a limit distance, that divides 
compatible points from not compatible ones, was described. 
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