
XIX IMEKO World Congress 

Fundamental and Applied Metrology 

September 6−11, 2009, Lisbon, Portugal 

 

ADJUSTMENT OF A NETWORK OF FUNDAMENTAL CONSTANTS 

 
 A B Forbes 

 
National Physical Laboratory, Teddington, UK, alistair.forbes@npl.co.uk 

 

Abstract − This paper considers the analysis of 

observational data associated with the fundamental 

constants, in particular looking at issues of consistency and 

sensitivity.  
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1.  INTRODUCTION 

An important interaction between metrology and the 

physical sciences in general is in the determination of the 

fundamental constants. From the metrology perspective, the 

goal of relating all the main units of measurement to 

fundamental quantities is within reach, although there is still 

debate about when and how the SI will be reformulated 

along those lines [1,2]. Irrespective of how these changes 

will be implemented, there is the issue of how the body of 

knowledge concerning the fundamental constants is 

assembled, analysed and the results disseminated to the 

science community. Most notable in this regard is the work 

of CODATA [3,4,5].  

The body of knowledge of a network of fundamental 

constants comprises measurement data and physical theory 

relating the values of subsets of the fundamental constants to 

each other. Often a measurement does not directly provide 

an estimate of a constant but instead that of a quantity, 

related through theory, in a linear or nonlinear way, to a 

number of constants. A particular constant may figure in 

several experiments associated with different aspects of the 

physical theory. Each such experiment provides information 

about the constant, and an adjustment of the value of that 

constant should take into account all relevant experimental 

evidence.        

Currently, exercises such as those performed by 

CODATA provide a simultaneous adjustment through 

solving a large nonlinear least squares problem involving a 

comprehensive set of measurement data to provide 

estimated values of the constants and an associated 

uncertainty matrix giving variances and covariances 

associated with the estimates.  

In implementing such an adjustment, the following 

questions arise: 

• How do we assess if the data and physical theory 

are consistent with each other? 

• If there is inconsistency, is there enough 

information (e.g., through multiple experiments) to 

indicate where it arises? 

• By how much can the input data be changed and 

still have consistency? 

• How can the adjustment model be used to predict 

the likely impact of a proposed experiment or judge 

which of two competing experiments should be 

performed?  

• How important is a given theoretical relationship 

and does the observational data support the theory? 

This paper addresses some of these questions, using 

methods that require no special techniques beyond those 

used in an adjustment process but often ignored in an initial 

analysis of a set of observational data. In section 2, the main 

analysis methods associated with least squares adjustment 

applied to a network of fundamental constants are described, 

including those pertaining to changing which constants are 

to be considered exact. In section 3, these techniques are 

applied to a very simple but relevant network of constants. 

Our concluding remarks are given in section 4. 

2.  LEAST SQUARES ADJUSTMENT 

It is assumed that the observational data takes the form 

of a vector T
1 ),,( myy K=y  and that each measured value 

iy  is an estimate of some function )(
�

iφ  of a subset of the 

constants ,),,( T
1 nαα K=�

 ,nm ≥  and has an associated 

standard uncertainty )( iyu . Assuming statistical 

independence of the measurements, appropriate  estimates 
T

1 ),,( naa K=a  of the constants are found by minimising  
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If ))(()( �� iiiii ywff φ−==  and J  is the Jacobian 

matrix with jiij fJ α∂∂= /  evaluated at the solution a, then 

the variance matrix associated with the fitted parameters is 

given by ( ) 1−
= JJV T

a . For the case in which there is 

correlation associated with the observations, the diagonal 

weighting matrix is replaced by the inverse of the variance 

matrix associated with the observations. We do not consider 

this case further here, but the analysis discussed below 

applies to this case also.  



2.1 Observation equations for fundamental constants 

The observation equations for adjustment of a network 

of fundamental constants generally have the form 
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where the indices ijc  are integer or half integer powers, 

most of which are zero. It is usually convenient to 

reparametrize the quantities, replacing jα  by ),1(0, jj αα +  

where 0,jα  is the current or nominal value of a quantity and 

jα  now represents the relative adjustment. Similarly, the 

observations can be transformed so that iy  is replaced by 

),(/))(( oioiiy �� φφ−  the relative difference between the 

observed value iy  and the (current) model prediction 

).( oi �φ  The associated standard uncertainty is essentially 

the relative standard uncertainty associated with the 

observation. With these transformations, to first order the 

observation equations can be written as 

iii ey += �cT , )),(,0(N 2
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with ).,,( 1
T

inii cc K=c  We make one further weighting 

transformation, replacing iy  by )(/ ii yuy  and ic  by 

),(/ ii yuc  so that the final form of the observation 

equations (to first order) can be written as  

).,(N IC�y ∈       (2) 

The (transformed) observation matrix C will be sparse with 

only a few nonzero elements in each row. In each row, the 

nonzero elements will be integer multiples of a common 

factor. Treating the observations as nonlinear, the associated 

Jacobian matrix will be very similar to C. For the rest of the 

paper, we will only be concerned with the linearised 

equations. If the relative standard uncertainties associated 

with the observations are of the order of one part in ,10
6

 

then second order effects will only become apparent at the 

one part in 1210  level. With this assumption, the analysis 

for the linear case will provide a good approximation to the 

nonlinear case.  

2.2 Analysis of fitted results 

The analysis of the fitted results of an adjustment 

exercise follows from the standard theory for least squares 

adjustment. The least squares estimate a of �  is given by 

,ya S=  ( ) .T1T
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The mn ×  matrix S is the sensitivity matrix of a with 

respect to y, and specifies the least squares solution as a 

linear combination of the observations. The matrix S is the 

pseudo-inverse of C, also known as the Moore-Penrose 

inverse [6], since .ISC =  If C has QR factorisation [6] 
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The variance matrix associated with y (in our case, the 

identity matrix since the observations and observation 

matrix already incorporate weights) is propagated through to 

that aV  associated with a:   
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The variance associated with the jth parameter is the sum of 

the squares of elements of the jth row of S so that S specifies 

the uncertainty contribution from each of the observations to 

each of the fitted parameters.  

 A measure of the total variation associated with the fitted 

parameters is given by the )(trace aV , the sum of the 

diagonal elements of aV , also the sum of the eigenvalues of  

.aV  It is easy to check that  
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so that the sum of squares of the elements in the ith column 

of S is the contribution of the ith observation to the total 

variation in the fitted parameters. 
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the fitted model values of the relative adjustment, the 

associated variance matrix ŷV  is given by 

( ) .
T
11

T
1

T
1

1T
111

T
ˆ QQQRRRRQCCVV ===

−
ay  

Thus, the standard uncertainty )ˆ( iyu  associated with the ith 

model prediction is the norm of the ith row of the matrix 

.1Q  Since the norm of the complete ith row of the 

orthogonal matrix [ ]21 QQQ =  is 1, we have 

).(1)ˆ(0 ii yuyu =≤≤    

 The residual vector r is given by 

,)()(ˆ T
22

T
11 yyyayyyr QQQQICSIC =−=−=−=−=  

and the associated variance matrix is .T
22QQV =r  It follows 

that  

,1)()ˆ( 22 =+ ii ruyu  .1)(),ˆ(0 ≤≤ ii ruyu  

If ,0)( =iru  it means that the ith model prediction must 

match the ith observation exactly, in other words, the ith 

model prediction is determined by the ith observation. 

Conversely, if ,1)( =iru  it means that the ith observation 

plays no part in determining the ith model prediction; it is 

determined using other information.  

2.3 The chi squared test 

If  ( ),,N T
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is a draw from a 2
nm−χ  distribution with nm −  degrees of 

freedom. The observed value can be compared with 

quantiles of 2
nm−χ  as a test of model-data consistency. Note 

that  
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the sum of the eigenvalues of .T
22QQ  The expected value of 

a draw from a 2
nm−χ  distribution is nm −  and the )( iru  

specify how the sum of squares is expected to be partitioned 

across the observations.  

2.4 Fixed values for some quantities 

In order to define the SI, some quantities are to be 

regarded as fixed, with no associated uncertainty. For 

example, in the current SI, the magnetic constant 0µ  is 

treated as exact. We assume that such exactness constraints 

can be written as ,
T

z
� =D  where D is a pn×  constraint 

matrix and z a p-vector of constrained values. If D has QR 

factorisation  
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 satisfies the constraints, then the constrained 

adjustment problem can be written as an unconstrained 

problem  
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involving the pn −  parameter vector .~�  The unconstrained 

parameters are given by .~
2
��

U=  The analysis above is 

easily modified to account for linear constraints. 

2.5 Continuity constraints on redefinition 

A possible consequence of a redefinition of the SI is that 

some quantities regarded as fixed become free and vice 

versa. In the context of the previous section, the constraint 

equations change. In going from one definition to another, 

there could be a change in the values of the constants. There 

is some scope for controlling that change by the choice of 

the constrained values. If there are p constraints, up to p 

linear combinations of the solution parameters can be 

specified. The problem can be posed as: determine z  such 

that the solution a  of  

2

2
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�
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T
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satisfies ,T g
� =F  where F and g  are a pre-assigned pn×  

matrix and p-vector, respectively. Let 2U  be defined as in 

(3), and  
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be the QR factorisation of .2CU  Any 
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 satisfying the 

constraint can be written as 
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It can be checked that the required z  satisfies 
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Similarly, z can be chosen so that the solution of the 

constrained optimisation problem minimises 
2

2
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and can be used to minimise some measure of the size of the 

relative adjustment on implementing a change in the SI. 

 

3.  EXAMPLE CALCULATIONS 

Analysis methods described above are illustrated in the 

following simple example involving six observations, five 

parameters and two constraints. Although the example is 

extremely simple, it is motivated by a study of issues 

associated with the redefinition of the SI [7]. The 

unweighted observation equations have the form 

,431 αα +−=y  

,2/2/ 54212 αααα +++−=y  

,413 αα +−=y  

,2 5214 ααα −−=y  

,315 αα −=y  

,2 5216 ααα −−=y  

with relative uncertainties of  

(10.0,10.0,1.0,1.0,0.1,0.1) .10 8−×  

In the first scenario, the fourth and fifth parameters are 

considered exact. In the second, the first and second 

parameters are treated as exact. 

For the first scenario, labelled A, the 63×  sensitivity 

matrix is  
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The rows correspond to parameters 1, 2 and 3, respectively. 

The sensitivity matrix immediately tells us that the main 

contribution to the uncertainties associated with the fitted 

parameters is that associated with the third observation. If 

uncertainty associated with 3y  could be halved, then the 

uncertainties associated with all the fitted parameters would 

also be halved. By the same argument, reducing the 

uncertainty associated with any or all of the other 

observations will have only a marginal effect on the 

uncertainties associated with the fitted parameters.  

 The vector of standard uncertainties )(ru  associated 

with the vector r of residuals is given by  

( ) ,10.001.000.111.000.100.1)(
T=ru  

showing that only observations 3, 5 and 6 are influential; all 

the other observations are essentially ignored. These 

uncertainties also provide information about the ability to 

detect discrepant data. Discrepant values for observations 1 

2 and 4 will be detected through large evaluated residuals. 

Discrepant values associated with observations 3, 5 and 6 

will not be detected, as the fit will accommodate them.  

 In scenario B, the sensitivity matrix is 

.10

10.000.001.0

00.000.000.0

00.010.000.0

00.000.000.0

99.005.010.0

00.000.000.0
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Here, the rows correspond to parameters 3, 4 and 5. In this 

case, the uncertainties associated with parameters ,3α  ,4α  

and 5α  are dominated by the uncertainties associated with 

observations 5, 3 and 6, respectively. The uncertainties 

associated with the residuals are the same as for scenario A; 

only observations 3, 5 and 6 are influential. The fact that the 

sensitivity matrices are different points to the different roles 

of the observations in the two scenarios. Note that an 

observation can be influential without contributing 

significantly to the sensitivities. In can be argued that 

scenario B is better in that the sum of the variances, 

)(trace aV , is less than half that for scenario A. 

 We now consider a revised set of observation equations, 

encoding doubt about the physics associated with 

observations 2, 3 and 4, and examining the potential value 

of a new experiment aimed at eliminating that doubt. The 

revised set of observation equations is 

   ,431 αα +−=y  

,2/2/ 654212 ααααα ++++−=y  

,2 76413 αααα +++−=y  

,2 75214 αααα +−−=y  

,315 αα −=y  

,2 5216 ααα −−=y  

,767 αα +=y  

involving a sixth and seventh parameter and one new 

(proposed) observation.  

AS  1y  2y  3y  4y  5y  6y  7y  

1α  -8.01 0.00 -0.20 -0.20 0.08 0.02 3.98 

2α  -4.00 0.00 -0.20 -0.10 0.04 -0.04 1.99 

3α  -8.01 0.00 -0.20 -0.20 -0.02 0.02 3.98 

6α  -4.00 0.05 0.40 -0.60 0.04 0.06 1.99 

7α  0.02 -0.05 0.00 1.00 0.00 -0.10 0.04 

 

AS  1y  2y  3y  4y  5y  6y  7y  

1α  -0.57 0.00 -0.94 -0.94 0.01 0.09 1.89 

2α  -0.28 0.00 -0.47 -0.47 0.00 0.00 0.94 

3α  -0.57 0.00 -0.94 -0.94 -0.09 0.09 1.89 

6α  -0.28 0.05 0.03 -0.97 0.00 0.10 0.94 

7α  0.10 -0.05 -0.01 0.99 0.00 -0.10 0.02 

 

AS  1y  2y  3y  4y  5y  6y  7y  

1α  -0.20 0.00 -0.98 -0.98 0.00 0.10 0.20 

2α  -0.10 0.00 -0.49 -0.49 0.00 0.00 0.10 

3α  -0.20 0.00 -0.98 -0.98 -0.10 0.10 0.20 

6α  -0.10 0.05 0.01 -0.99 0.00 0.10 0.10 

7α  0.10 -0.05 -0.01 0.99 0.00 -0.10 0.00 

Table 1. Sensitivity matrix for scenario A with ,10)( 7
7

−=yu  

810−
 and ,10

9−
 top, middle and bottom, respectively. 

 

We calculate, in Table 1, the sensitivity matrix in scenario 

A, for parameters 1, 2, 3, 6 and 6 (with the fourth and fifth 

parameter treated as exact) for 87
7 10,10)( −−=yu  and 

.10 9−  The Table shows that increasing the accuracy 

associated with observation seven means that the main 

contribution to the sensitivity of the parameters is moved 

from observation one to the more accurate observations 

three and four. The calculations show that observation seven 

is only taken into account only if its standard uncertainty is 

of the order of one part in .107  Additionally, increasing its 

accuracy beyond one part in  810  has only a marginal effect 

on the standard uncertainties standard uncertainty associated 

with the fitted parameters.  

CONCLUSIONS 

We have reviewed some of the analysis techniques that can 

be applied to least squares adjustment. Often, the focus of 

attention is on the values of the fitted parameters and the 

associated variance matrix. However, the sensitivity matrix 

contains valuable information about the dependence of the 

fitted parameters on the observations. In the first example 

considered in section 3, the sensitivity matrix immediately 

pointed to the relative importance of the various 

observations. In scenario A, we saw that in order to improve 

the uncertainties associated with the fitted parameters, only 

the third observation is important; improving the 

uncertainties associated with any of the other observations 

would have only a marginal effect. In this way the 

sensitivity matrix can give a strong guide to how 

measurement resources should be applied in order to have 

maximal impact. In the second example, the sensitivity 

matrix was used to show the potential impact of a new 

proposed experiment. In a similar vein, the uncertainties 

associated with the residuals give valuable information 

about the ability to detect discrepant data. 
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