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Abstract  Windows are frequently used in digital 

signal processing, mainly for leakage reduction in non-
coherent sampling (spectral analysis, detection of weak 
harmonic components close to a strong harmonic 
components, e.g. in ADC testing) or in FIR digital filter 
design. Many windows are described and compared in 
literature. This paper informs about a mathematical 
instrument and an algorithm allowing design of several 
classes of cosine windows with various prescribed 
properties. The design is based on iterative window 
spectrum zeros placing. Window coefficients are presented 
either as high-accuracy decimal numbers or in a more 
compact form of ratios. The proposed algorithm can be 
implemented using any computing instrument; we have 
selected Matlab environment. The designed Graphical User 
Interface allows easy inserting of required window spectrum 
properties and presentation of resulting window coefficients, 
window spectrum and window shape in time domain. The 
method allows design of all three window classes of Rife 
and Vincent windows (up to the window order 10) but 
allows also design of windows with different properties, 
corresponding to some newly defined window classes. Both 
symmetrical and periodic (DFT) windows can be designed. 
The principle of the method is described and definitions of 
the new window classes and examples of designed windows 
are presented.  

Keywords: digital signal processing, data windows, 
windows design 

1.  INTRODUCTION 

Multiplication of the signal part to be processed by a 
function of the same length N, usually symmetrical around 
axis in its centre and smoothly approaching zero values at its 
ends (sometimes with the left-out last sample) and called 
“window” is common practice in digital signal processing. 
The aim of windowing is reducing energy leakage in 
frequency domain in spectrum analysis by DFT (discrete 
Fourier Transform) in case of non-coherently sampled signal 
[1], [2] or reducing frequency response ripple by designing 
FIR filters [3]. Reference [2] presents overview, definitions 
of basic parameters, coefficient values and comparison of 
spectra and properties of a large number of windows. Some 
corrections to windows described in [2] and some additional 

windows are presented in [4] (design is based on Fourier 
Transform of continuous data windows, cosine windows 
with order up to 3 are designed for minimum side-lobes 
level or rapid side-lobe decay combined with minimal side-
lobes level and compared with Kaiser-Bessel windows). 
Generalized cosine windows are used by far most frequently 
because of the ease of their mathematical handling. 
Coefficients of these windows for the window orders up to 
10 found for minimum side-lobe magnitudes are presented 
as decimal numbers of the length of 16 in [5]. A design 
procedure based on window spectrum zeros position is also 
presented there, but the mathematical handling in [5] differs 
from the one presented here and the in [5] described 
algorithm is applied only to design of windows with 
minimum relative side-lobe magnitude. 

Signal windowing influences values of the estimated 
signal parameters as e.g. RMS value [6], [7], [8], active 
power [9], power spectral density [10], phase or THD, so 
appropriate numerical corrections of the bias produced by 
windowing have to be used. Windowing is used also in 
interpolated DFT [11] and its applications (e.g. [12]). A 
window design method based on energy parameters allows 
high accuracy estimation of signal harmonic component 
parameters using small number of signal samples and is 
therefore suitable for real-time parameter estimation [13]. 
Besides bias reduction of the measured signal parameter 
caused by windowing, also influence of additive noise on 
windowed signal parameter estimation should be taken into 
account. It is determined by window equivalent noise 
bandwidth [2] and for RMS value estimation it is 
investigated for flattop cosine windows in [7] and for Rife-
Vincent windows of the classes 1 to 3 in [12]. Design 
procedure based on iterative minimization of maximum 
ripple of window spectrum within basic window magnitude 
spectrum frequency bin, numerical parameters of several 
flattop windows and their comparison to classical windows 
by RMS values estimation without using DFT interpolation 
are presented in [7]. 

Even if by the most applications some of classical 
windows, the coefficients of which are generally known, are 
used, sometimes another window with its spectrum fitted to 
a given application would be more useful. The ideal window 
would have minimum main lobe width, minimum side-lobes 
level, maximum side-lobes fall-off and minimum equivalent 
noise bandwidth, but these requirements cannot be fulfilled 
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simultaneously. There is in fact no ideal signal window, any 
given application requires its own optimum window 
parameters. These optimum parameters depend on 
frequency content of the measured signal and on the 
estimated signal parameter. For example, minimum main 
lobe width is required if there are some strong frequency 
components close to each other in the processed signal. The 
low side-lobes level is required if weak frequency 
components close to a strong component in a multi-
frequency signal have to be detected. If a high broadband 
additive noise is present, a window with low equivalent 
noise bandwidth should be used. The used window presents 
usually a compromise of several conflicting requirements. 
This paper presents a general design method of cosine 
windows and some new window classes with selectable 
additional properties as compared to the known cosine 
window classes. Classical Rife-Vincent windows of all three 
classes can be designed by this procedure, also for window 
orders higher than those presented in [1], [12], and other 
publications known to authors. Window design is based on 
iterative placing of window spectra zeros on frequency axis 
so that the desired magnitude window spectrum properties 
are fulfilled. We have used Matlab environment for all 
calculations. A graphical user interface allowing easy 
definition of desired window spectrum properties, 
calculation and presenting of window spectra zeros and 
window coefficients (allowing their presentation also as 
ratios or decimal numbers with selected numerical accuracy) 
is prepared. This GUI also shows designed window 
spectrum, and window shape in time domain. Examples of 
windows designed by the described method are included in 
parts 3.2 and 3.3.  

2.  PRINCIPLE OF THE WINDOWS DESIGN BY 
WINDOW SPECTRUM ZEROS PLACEMENT 

2.1. Cosine window spectrum, its zeros and their 
context with window coefficients. 

Cosine window of the order L, defined for samples 
, where  is window length in samples 

and  are window coefficients (numerical values of which 

are in vast majority of in practice used windows changing 
signs regularly with increasing r, starting from the positive 
value of D0) can be expressed as 
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Its magnitude spectrum is composed of sum of 2L+1 
spectra of rectangular window with magnitudes determined 
by window coefficients and shifted by 0 to ±L frequency 
bins. The complex DFT spectrum of a sampled rectangular 
window (normalized to maximum value of 1 and of the 
length of N samples) can be expressed as the so-called 
Dirichlet kernel  
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where θ is frequency expressed in frequency bins. 
The corresponding continuous-time magnitude window 

spectrum can be found from (2) as a limit for N → ∞ and 
simultaneously TS → 0 (TS being sampling period) so, that 
the window length in seconds Tr = N.TS is preserved. It is 
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The normalized magnitude spectrum of a continuous-
time general cosine window can be expressed as 
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Equation (4) can be expressed decomposed into two 
multiplicative components  
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(5) 

The first component does not depend on window 
coefficients and this component’s zeros (we shall call them 
fixed window spectrum zeros) define the shape and 
properties of the initial window. The initial window 
spectrum can be modified by the second component. The 
desired modification is achieved by a suitable placement of 
the zero values of this component. These zeros depend on 
window coefficients. We shall call them movable window 
spectrum zeros. The first component zeros lie on the integer 
frequencies expressed in frequency bins of  1 L  and 

outside this interval. Without the influence of the second 
component of (5) the first zero value corresponds to the half 
of the window spectrum main-lobe width (and it is, similarly 
like all fixed zeros, a real value zero).  

The movable spectrum zeros can be found by solving the 
equation 
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and the magnitude spectrum of the window can be then 
expressed (Zr are the movable spectrum zeros) as 
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Number of the positive real part value movable zeros 

corresponds to the order of window L and it represents also 
number of degrees of freedom by window design. A direct 
analytical movable zero finding from (6) is simple for 
windows of the order 1 and 2, but difficult for window order 
3 and practically impossible for higher order windows. 
Calculation of movable zeros from window coefficients and 
vice versa is possible if the used mathematical tool offers 
implementation of procedures suitable for finding zeros of a 
given function, for building a polynomial from its zeros and 
for basic matrix operations. One of the frequently used 



instruments offering all these capabilities is Matlab, offering 
besides matrix operations also functions roots and poly. For 
any window order L a matrix  of the dimensions 

 can be found (based on (6)) for which there is  
A

 1,1  LL 

 DArootsZ   (8) 

D  being vector of window coefficients (size 1L ) and Z 
being vector of movable zeros of the window (size L  for 
positive real-part window zeros and size L2 for all window 
zeros, with regard to the spectrum symmetry). 

The window coefficients corresponding to the movable 
zeros can be found as (in Matlab notation) 

 2\ ZpolyAD   (9) 

The research of windows design by placing the window 
spectrum zeros is motivated by the comparatively low 
sensitivity of the window magnitude frequency spectrum to 
the change in window spectrum zeros values compared to 
the sensitivity of this spectrum shape to changing window 
coefficient values. The real-value spectrum zeros correspond 
to frequencies on which the window magnitude spectrum 
crosses the zero level. Window coefficients are bound with 
these crossing values by the functions roots and poly (see 
(8) and (9)). A small change in coefficient values can lead to 
essential changes of the movable zeros and consequently 
also of window shape and corresponding properties. The 
searched space of possible values of movable zeros is more 
smooth than a space of values of the coefficients, and that is 
why a simple search algorithm can be used to find the zeros 
values. 

2.2. Window spectrum zeros and their influence on 
window shape and properties  

Based on (5), it is possible to take into account 
separately a component depending solely on window order 
(defining “initial” window shape, determined by window 
spectrum fixed zeros), and another component of window 
spectrum zeros vector, composed of movable zeros. These 
zeros allow to change the designed window shape and to 
optimize the window properties. The design of classical 
hamming window shown in Fig.1 can serve as a typical 
example. Placing its only one movable zero on the 
frequency of approximately 2.598 frequency bins results in  
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Fig. 1.  Magnitude frequency spectra of hamming window and its 
two components, corresponding to fixed and to movable window 

spectrum zeros (there is only one movable zero here). 

substantial decrease of the window spectrum first side-lobe 
magnitude (but paid for it by slower side-lobe fall-off). 

Rectangular window is a zero-order cosine window and 
it offers therefore no movable zero. Higher-order windows 
offer several movable zeros (their number in each frequency 
half-plane equals to window order L, and their values are 
symmetrical for positive and negative frequencies). 
Magnitude window spectrum of higher-order windows can 
therefore be more distinctly changed and more complex 
requirements on its properties can be fulfilled. The difficulty 
of movable zeros optimal placement increases with window 
order, since also number of dimensions of possible solutions 
increases.  

Important window properties can be influenced by 
movable window placement, including e.g. main lobe width, 
side-lobes fall-off or effective noise bandwidth of the 
window (ENWB).  

3.  SEARCH ALGORITHM, WINDOW CLASSES AND 
DESIGNED WINDOWS EXAMPLES 

3.1. Selection and design of the search algorithm  

The window design task is to find optimal placement of 
movable spectral zeros to fulfill prescribed spectrum 
properties. Movable zero positions form an L-dimensional 
space of real positive values. This space is searched through 
by a suitable search algorithm. Greedy search algorithm 
finding gradient in a point surrounding was selected and for 
increasing search speed and security against finishing search 
on a local extreme a stochastic search component was 
included to it. It means that in every step a random point in 
close surrounding of the actual point is selected in the 
searched L-dimension movable zeros space, and the range of 
proximity (simultaneously in every dimension) is step by 
step diminished so that the algorithm be faster at the 
beginning and more precise close to the end of search. 

The magnitude spectrum is computed for each new tested 
state (zeros value set), its basic parameters are evaluated and 
the state is evaluated according to the selected optimum 
criterion (window class). We have experimentally found that 
the algorithm is not much sensitive to the initial placement of 
the movable zeros.  

The search is finished after a selected number of 
consequent unsuccessful tests of the point surrounding is 
passed and when the selected accuracy of the movable zeros 
positions was achieved. It was experimentally found that the 
accuracy of movable zeros corresponding to three decimal 
places is sufficient for the good agreement with the 
commonly used window coefficients accuracy.  

3.2. Cosine window classes (known and newly defined) 

The three basic classes of cosine windows were defined 
by D. C. Rife and G. A. Vincent [1]. They are denoted here 
as classes RV1, RV2 and RV3. Windows of the class RV1 
are designed for maximization of window spectrum side-
lobes fall-off. There is an analytical prescription for the 
design, based on number of time domain window 
derivatives zeros on window ends [4]. 

Windows of the class RV2 (based on Dolph-
Tchebyschev windows) are designed for minimization of the 
window spectrum main-lobe width for a given maximum 



level of side-lobes relative magnitude R. There is no exact 
analytical prescription for the Dolph-Tchebyschev windows, 
but an approximation (Taylor approximation) with 
analytical formula providing good results for low enough R 
is used.  

Windows of the class RV3 are designed as a 
compromise between windows RV1 and RV2 – i.e. between 
window side-lobes fall-off and the window main-lobe width 
by given relative amplitude of the window side-lobes. 

A comparison of these windows for window order 5L  
is presented in Fig.2. 
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Fig. 2.  Magnitude frequency spectra of windows RV1, RV2 and 
RV3, window order 5, parameters of windows RV2 and RV3 see 
the legend (SLA is the highest side-lobe level in dB, FO is side-

lobes fall-off in dB/oct).  

Some new additional classes are proposed in this paper. 
Windows of the class 4 (C4) minimize relative side-lobe 

level by a prescribed side-lobes fall-off. A comparison of 
window RV3 and C4 for identical window order L and side-
lobe fall-off FO is presented in Fig.3. 
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RV3  L=5 SLA=-60 FO=12
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Fig. 3.  Magnitude frequency spectra of windows RV3 and C4, 
window order 5, parameters of windows see the legend (SLA is 

highest side-lobe level in dB, FO is side-lobes fall-off in dB/oct). 

Windows of the class 5 (C5) minimize relative side-lobe 
level by a prescribed number of movable zeros in infinity  
(NZ). Using remaining movable zeros for side-lobe 
minimization leads to the best relation between side-lobe 
attenuation and side-lobe fall off (an example of two 
magnitude spectra of class 5 windows see Fig. 4). 
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Fig. 4.  Magnitude frequency spectra of windows of class C5, 

window order 5, number of zeros in infinity (NZ) see the legend. 

0 5 10 15 20 25 30

-150

-100

-50

0
Magnitude frequency spectrum (related to 0 dB)

 (frequency bin)

M
ag

ni
tu

d
e 

(d
B

)

 

 

C6  L=5 FO=12 ML=3.5
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Fig. 5.  Magnitude frequency spectra two windows of class C6, 

window order 5, FO is side-lobe  fall-off in dB/oct., ML is a half of 
the main-lobe width in frequency bins. 

Windows of the class 6 (C6) minimize the relative side-
lobes level by a prescribed main-lobe width (in frequency 
bins) and prescribed minimal side-lobe fall off (Fig. 5). The 
main-lobe width can be selected for a concrete application 
so that the main-lobes placed on closest neighboring signal 
components do not overlap. 

Windows of the class 7 (C7) minimize relative side-lobe 
level starting from a prescribed (“critical”) frequency 
(Fig. 6).The design is similar to design used in class 8 
windows but it allows designing windows with lowest side-
lobe level from a prescribed frequency.  
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Fig. 6.  Magnitude frequency spectrum of a window C7, window 

order 5, 
CL  is critical frequency in frequency bins - see the legend 

(the achieved relative side-lobe level is -205.95 dB).   

Windows of the class 8 (C8) minimize the frequency 
above which the spectrum side-lobes level does not surpass 
a given level (Fig. 7).  

 

0 10 20 30 40 50 60
-250

-200

-150

-100

-50

0
Magnitude frequency spectrum (related to 0 dB)

 (frequency bin)

M
a
gn

itu
d
e 

(d
B

)

 

 

C8  L=5 CL=-200

 

Fig. 7.  Magnitude frequency spectrum of a window C8 and 
window order 5, CL is side-lobes level in dB (corresponding 
minimum frequency 

CL  that is here 9.49 frequency bins). 

3.3. An example selection of designed windows and 
their basic parameters) 

A few examples of designed windows (their zero 
positions, window coefficients and basic window 
parameters) are presented in table 1. Majority of the 
presented windows corresponds to figures in the part 3.2. 
Following abbreviations and symbols are used in this table: 
D - window coefficients normalized to maximum window 
time-domain value, i.e. maximum level of the window in 
time domain being 1, coefficients are given for windows 



defined for positive time, Z - movable spectral zeros, ML – 
half of main-lobe width (in frequency bins) – note that it 
does not mean the complete window main-lobe, SL - first 
side-lobe level (in dB), SLA - highest side-lobe level (in dB), 
BW (3dB) 3 dB main-lobe bandwidth, FO - side-lobes fall-
off (in dB/octave), ENBW - equivalent noise bandwidth BW 
(in frequency bins), L - window order, NZ - prescribed 
number of zeros in infinity, CL - (critical level, in dB) 
maximum side-lobe level behind selected frequency 

CL , 

CL  - (critical frequency in frequency bins) frequency 

reached for given CL. 

Table 1. Examples of selected windows basic parameters, windows 
spectrum zeros Z and windows coefficients D. 

movable zeros R, window coefficients D Window 

ML 
(fr.bin) 

SL 
(dB) 

SLA 
(dB) 

BW 
(3dB) 
(fr.bin) 

FO 
(dB/oct.) 

ENBW
(fr.bin)

additional 

6,00 -87,94 -87,94 2,75 72,39 2,91   RV1 L=5 
R=[ Inf Inf Inf Inf Inf ] 
D=[ 63/256 -105/256 15/64 -45/512 5/256 -1/512 ] 

2,07 -47,32 -47,32 1,33 5,69 1,39   RV2 L=5 
SLA=-47.32 R=[ 2.07096 2.52934 3.25873 4.11879 5.04723 ] 

D=[ 8665/16446 -1655/3557 49/9634 -125/32111 -37/20152 
-8/11403 ] 

4,50 -105,00 -105,00 2,02 17,31 2,13   RV3 L=5 
SLA=-105 
FO=12 

R=[ 4.49857 4.89090 5.20852 6.02999 Inf ] 
D=[ 87865/260803 -163088/340445 487432/2996403 
-53756/2565221 572/1343281 -1/1436838 ] 

6,00 -150,27 -150,27 2,32 16,94 2,46   C4 L=5 
FO=12 R=[ 6.18579 6.56122 7.84510 11.15333 Inf ] 

D=[ 10278995/35334188 -11383814/25293643 
8869544/43553097 -1010395/20299417 257578/47321941 
-1464/9195433 ] 

6,00 -153,57 -153,57 2,30 5,30 2,43   C5 L=5 
NZ=0 R=[ 6.17587 6.51849 7.76470 10.28907 19.05314 ] 

D=[ 1872717/6379399 -6502663/14388489 3612425/17935034 
-512357/10690410 20451/4068748 -2060/14974699 ] 

6,00 -150,27 -150,27 2,32 14,71 2,46   C5 L=5 
NZ=1 R=[ 6.18579 6.56123 7.84509 11.15333 Inf ] 

D=[ 7094377/24387021 -123035759/273372586 
6971137/34231138 -3225252/64797149 196116/36030181 
-1802/11318395 ] 

3,50 -80,70 -80,70 1,80 17,59 1,90   C6 L=5 
FO=12 
ML=3.5 

R=[ 3.50000 3.82589 4.40949 5.18228 Inf ] 
D=[ 54441/143207 -35591/71888 10153/84762 -487/98298 
29/471144 14/318861 ] 

1,50 -25,66 -25,66 1,17 17,11 1,22   C6 L=5 
FO=12 
ML=1.5 

R=[ 1.50000 2.25740 3.30254 4.48199 Inf ] 
D=[ 379/622 -1737/4438 -299/6074 -174/3605 -1134/18869 
-573/9496 ] 

6,00 -98,73 -98,73 2,57 9,91 2,72 
CL= 

-205,95 dB
C7 L=5 
CL =10 

R=[ 10.31773 11.17172 13.78587 17.32376 33.84168 ] 
D=[ 6567959/25013889 -50589330/118760947 
42844267/191072178 -6954194/95222661 221466/16781899 
-149108/150161583 ] 

6,00 -100,84 -100,84 2,54 9,40 2,69 CL= 
9,5 fr.bin

C8 L=5 
CL=-200 

R=[ 9.55481 10.43171 12.38790 17.03281 32.27557 ] 
D=[ 14640889/55220399 -86468074/201877425 
6432467/28906250 -6461703/91264951 1624676/131703081 
-117185/133356736 ] 

3.4. Complex values of movable window spectra zeros 
and flattop windows. 

As we have mentioned in part 3.1, the movable zeros 
used by us for window design are real numbers. Some 
movable zeros of cosine window spectra can nevertheless be 
complex numbers. They are not suitable for the above 
mentioned window classes design, since they do not lead to 
so good window properties as in the case of window design 

based on all zeros being real. They also do not correspond to 
(real) frequency values for which the magnitude window 
spectrum crosses the zero level. 

Nevertheless, also these zeros can be used in window 
design. The so-called flattop windows, i.e. window designed 
for maximum flatness of their main lobe in the frequency 
range ± 0,5 frequency bin, can be designed with their use. 
The goal of flattop window design is to design a window 
with such a spectrum, that it will be without any additional 
processing as much as possible insensitive to the non-
coherency of sampling. These windows are useful in multi-
frequency signal frequency analysis, since when using them 
for processing individual components of these signals, there 
is no necessity using interpolated DFT. 

After selecting a suitable cost function for the search 
algorithm, the above described method can be adapted also 
for design of flattop windows of various orders. Their 
design is more complicated because of the additional 
dimension of window zero values.  

Magnitude frequency spectra of two flattop windows 
(one of the 3rd order, the other one of the 4th order) designed 
by means of zeros placement, both with one imaginary 
movable zero, and magnitude frequency spectrum of the 
window implemented in Matlab as “flattop window” are 
shown in Fig. 8 and Fig. 9. Note especially the better 
flatness of the new windows in the interval ± 0.5 frequency 
bin clearly shown in the zoomed spectra in the first 
frequency bin in Fig.9.  
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Fig. 8.  Magnitude frequency spectrum of three flattop windows  
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Fig. 9.  Magnitude frequency spectrum of three flattop windows 

shown for frequency around 0.5 frequency bin 



4. CONCLUSIONS 

An effective method of iterative design of cosine 
windows of nine different classes including the three known 
Rife-Vincent window classes, the flattop window class and 
five newly defined window classes was presented and 
examples of window magnitude spectra, window 
coefficients and basic window properties were overviewed 
for selected windows representing all the newly defined 
classes. We have simplified the presented window design by 
developing a specialized graphical user interface in Matlab 
environment, where also all computations were performed. 
The newly defined window classes allow some additional 
window spectrum properties prescription compared to 
windows described in [1] and [5], but design of windows 
from [1] and [5] is also covered by the presented method 
and the used algorithm. The described method can be used 
also for flattop-type windows design. Some window zeros 
may in this case be complex numbers and can optimize the 
main-lobe window magnitude spectrum flatness.  
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