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Abstract − In this paper we are introducing the concept 

of personal instrumentation. Personal instrumentation stands 
for a measuring device, which includes also calculative 
algorithms and measuring methods and techniques, which 
along measuring of physiological parameters enable also 
collecting other types of data for a certain patient in a certain 
condition at a certain time. Therefore such devices would be 
a useful tool for the physician to better diagnostically 
evaluate the state the patient is in, and that in a holistic 
manner. The evaluation of the concept of personalised 
instrumentation is discussed in the field of non-invasive 
blood pressure measurements.  

The majority of nowadays home-use, GP and clinical 
practice non-invasive blood pressure (NIBP) measurement 
devices use the oscillometric principle of measurement. In 
this paper we are discussing and describing an oscillometric 
device including also other forms of collecting data. Its aim 
is to produce correction factors, which would enable 
calculative corrections of the measured systolic and diastolic 
blood pressure levels to better suit the patient current status.  

Keywords: blood pressure, soft metrology, data mining, 
personal instrumentation 

1.  INTRODUCTION 

The advancements in biomedical science and technology 
are leading to novel types of medical measuring 
instrumentation.  One of the types is instrumentation whose 
measuring function is adapted and/or adjusted not only to 
specific physiological parameters of the patient, but also to 
various   subjective, psychophysical state of the patient. In 
this paper a novel holistic instrument for non-invasive blood 
pressure measurement is discussed. During the measurement 
process the instrument takes into account also other 
parameters, which are not necessarily of physiological 
origin but in any case relevant for the blood pressure level, 
such as emotional stress of the patient, anxiety, white-coat 
hypertension effect, activities prior the measurements, etc. 

Measuring blood pressure non-invasively was first 
described already in the late 1800s. Different method for 
blood pressure determination were used and described, i.e. 
oscillometry was first described already in 1860 by Marey. 
A couple of decades later today’s classical Riva-Rocci and 
Korotkov auscultation method was described. Nowadays, 
these methods are the main blood pressure measuring 
methods used in both clinical and home-care environment. 

In 1980s the oscillometric method has re-emerged in clinical 
use. Today it is used with increasing regularity mainly in the 
scope of semi- or full automatic NIBP devices. 

The main idea of the oscillometric method is 
measurement of pressure pulses, which occur in the bladder 
of a non-invasive cuff wrapped over an artery around the 
patient’s limb. Arterial pulse waves are transmitted via the 
cuff and measured in form of pressure pulses by a pressure 
sensor in the NIBP device. The amplitude and shape of 
pressure pulses vary as the static pressure in the bladder is 
reduced from above systolic to below diastolic blood 
pressure. Using different (proprietary) calculative 
algorithms, systolic and diastolic blood pressures are 
determined from the pressure pulses’ envelope.  
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Fig. 1. Principle of personalised oscillometric blood pressure 
device. By measuring changes in cuff pressure systolic and 
diastolic blood pressure are determined. Determination is 

performed by empirical calculative algorithms of the device’s 
logic. Correction factors are determined by other type of input data 

(heart rate, skin conductivity, ECG signal, level of relaxation, 
physical activities, current health condition, etc). 

 
Oscillometry is an attractive measuring method for the 

simplicity of cuff application and device operation. On the 
other hand, it suffers from the empirical nature of existing 
algorithmic methods, the disagreements over methodology, 
the proprietarily of commercial algorithms, and the resulting 
problems with accuracy. Commonly, the oscillometric 
devices are quite accurate compared to classic mercury-in-
glass sphygmomanometers and auscultatory measuring 
method when measuring a normo-tension patient. But they 
tend to develop measuring errors when not well maintained, 
regularly calibrated and/or measuring severe hypertension 
patients, or patients with certain physiological properties 
(arteriosclerosis, heart arrhythmia, and various heart 
conditions). Oscillometry is known to be also quite sensitive 
to moving artefacts [1, 2, 3, 4].  



The aim of our research is to build a NIBP device, based 
on oscillometry, but instead of a common empirical 
calculative algorithm employing regression models gained 
from data-mining methods. As such it would potentially 
estimate blood pressure more reliably and accurately also for 
commonly problematic type of oscillometric measurements 
(severely hypertensive patients, arteriosclerosis, heart 
arrhythmia, excessive moving, incorrect body position, 
measurements in not relaxed state, etc). In this paper we are 
describing and evaluating the idea of replacing the empirical 
calculative algorithms of oscillometric NIBP devices by 
data-mining methods in order to increase device’s accuracy 
and reliability.   

2. PERSONALISED INSTRUMENT FOR NON-
INVASIVE BLOOD PRESSURE MEASUREMENT 

The necessary data for teaching phase of building the 
regression model was acquired by an upgraded virtual 
instrument for blood pressure measurement designed in 
LabVIEW environment for a previous study [5]. The 
instrument consisted of a data-acquisition module and a 
data-processing module. In the data- acquisition module the 
oscillometric envelopes were sampled by means of a cuff 
and a calibrated pressure transducer. Oscillometric 
envelopes represented the input data for the data-processing 
module. The inputs for the teaching phase of the data-
processing module were systolic and diastolic values of 
blood pressure. Values were determined by measuring 20 
healthy volunteers using a verified clinically validated 
commercial NIBP device. Prior to the measurement the 
volunteers filled-in a questionnaire about their psycho-
emotional status, e.g. 5 grade level of relaxation, description 
of physical activities prior the measurements, current health 
condition (healthy, acute, chronic illness), heart rate before 
the measurement, skin conductivity, ECG signal, etc. In the 
data-processing module the calculation of both systolic 
(SYS) and diastolic (DIA) blood pressure levels took place. 
Basic inputs for the regression model, built with data mining 
tool for the determination of blood pressure levels were 
pairs of an oscillometric envelope of the pressure pulses and 
resulting systolic and diastolic blood pressure values, 
determined within the same measurement. 

In the future, calculative corrections of SYS and DIA 
will be implemented taking into account some general 
correlations between blood pressure level and psycho-
physical state of the patient. E.g. a patient climbing up the 
stairs to reach the physicians office has elevated blood 
pressure level or patient sitting in incorrect position would 
have the blood pressure levels altered. At the moment the 
teaching group is far too small to draw any conclusions 
about these correlations. With a larger teaching group the 
values of the correlation coefficients would be more 
significantly determined. Resulting in a more reliably SYS 
and DIA corrections. 

 
 

2.1. Acquiring of  the oscillometric envelopes 
 

A set-up for acquiring the oscillometric envelopes and 
blood pressure determination was built. System was built by 
means of a suitable pressure transducer and a measurement 
system with high enough sampling frequency. Pressure 
transducer XFPM 050KPG-P1 (by Fujikura) was used. By 
means of an A/D card SCB-100TT (by National 
Instruments) it was connected to a personal computer. In 
LabVIEW environment a programme for acquiring of the 
pressure transducer’s output, pre-processing and processing 
of acquired data was written. Output of the programme was 
a time series of pressure pulses amplitudes versus the cuff 
pressure, i.e. the oscillometric envelope with sampling 
frequency 300 Hz. 

Raw data was processed in LabVIEW environment. It 
was preconditioned (removing the outliers, preparation for 
the processing). The oscillations were filtered from the 
acquired raw signal by using a simple subtractive method. 
The deflating cuff pressure was fitted by a polynomial 
function and subtracted from the acquired raw signal, 
resulting in a time dependant function of the oscillations' 
amplitudes. Filtering using the fitted ramp is not equivalent 
to subtracting the base cuff pressure, i.e. the cuff pressure as 
it would be without oscillations, from the acquired signal. It 
involved a certain averaging, resulting in waveform shown 
in Fig. 2. In-time conditioning was included, enabling 
manual improvement of the envelope shape to exclude 
errors due to incorrect sampling process, motion artefacts, 
tremor or cardiovascular abnormalities during the measuring 
period, etc. 
 

 
 

Fig. 2. Oscillometric envelope formed using baseline-to-peak 
oscillation amplitude. 

 
Commonly, there are three main possibilities of 

conditioning the oscillation amplitudes to form the 
oscillometric envelope; peak-to-peak oscillation amplitude, 
function of partial or full time-integral of the oscillometric 
pulses and baseline-to-peak oscillation amplitude [6]. Due to 
simplicity we decided on the latter.  



 
Fig. 3. LabVIEW front panel of the cuff pressure pulses 

acquiring. The graph on the left shows the acquired raw pressure 
signal in the cuff while inflating and deflating. The graph on the 
right shows the selected part of the deflation, with oscillometric 

pressure pulses noticeable. 

2.2 Acquiring the blood pressure levels 
For the purpose of this research two blood pressure 

signals were used for generation of oscillometric envelopes. 
Ninety real physiological blood pressure signals from 23 
healthy volunteers were acquired. Blood pressure levels 
were determined by means of a commercial clinically 
validated NIBP device M6 (HEM-7001-E by Omron 
Healthcare) [7]. The acquiring of the raw pressure signal 
was followed by removing the moving artefacts, outliers and 
other errors in measurements by the pre-processing module. 
Using the LabVIEW programme the optimal envelope shape 
could be adjusted and optimised (Fig. 3.). 

 

2.3 Building of the model 
A transfer function has been built by means of regression 

model, built with data mining tool, which was further used 
for estimation of blood pressure.  
For systolic and diastolic pressure modelling we used open-
source machine learning software WEKA, which is in the 
universities’ environment a well-known tool for data mining 
[9]. Regression models were built on the dataset, which 
consisted of 125 physiological envelopes of healthy 
volunteers (fig. 6). Inputs of regression models were built in 
form of vectors from the envelopes using sampling. We 
varied the length of the input vector from 10 to 1000. 
Sampling with different time delays was additionally 
performed. Outputs of the models are either systolic or 
diastolic pressure (fig. 4). The following model types were 
used: simple linear regression, feed-forward neural network 
(multilayer perceptron) and a model based on support vector 
regression. 

The quality of regression models, which we also call 
predictors, was estimated by means of the following 
performance measures: root mean squared error (RMSE), 
correlation coefficient (CC), and Mean Absolute Error 
(MAE). 
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RMSE (1) estimates the standard deviation of the mean 
value of the estimation (SIS/DIA pressure), which was 
subject of our modelling. CC measures the correlation 
between real and estimated values [ ]1,0∈CC . Of good 
quality are those who’s CC is near value of 1. MAE 
measures the mean value of the absolute discrepancies 
(deviation).  Because our dataset was of limited size, with an 
aim of avoiding the overfitting, we used a mechanism called 
n-fold cross validation in order to estimate the error of 
prediction (regression) [11].  The data set was divided into N 
subsets, and the holdout method was repeated N times. Each 
time, one of the N subsets was used as the test set and the 
other N-1 subsets were put together to form a training set. 
Afterwards the average error across all N trials was 
computed. The advantage of this method was that it 
mattered much less how the data got divided. The variance 
of the resulting estimate was reduced as N was increased. 
The disadvantage of this method was that the training 
algorithm had to be rerun from scratch N times, which 
meant it took N times as much computation to make an 
evaluation. We build the final model on the whole dataset.  

   
 
 

Fig. 4. Regression model for estimation of pressure. The length 
of input vector x(n) was varied from  10 to 1000. The length of 

output vector is 1 and represents SYS and DIA pressure. 

2.3.1 Data mining models 
Linear regression is a simple statistical method that 

models the relationship between a dependent variable )(ˆ ty , 
independent variables pitxi ..1),( =  and a random term ε . 
The model can be written as: 
  

εβββ +++= )(...)()(ˆ 110 txtxty pp      (2)  
where 0β  is the intercept ("constant" term), the iβ  are the 
respective parameters (weights) of independent variables, 
and p  is the number of parameters to be estimated in the 
linear regression. The main idea of linear regression is to 
find the set of iβ  which minimizes: 
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For the estimation of weights iβ  in the (3), could be used 
different methods. 
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Fig. 5 Estimation of the performance of models for pressure 
prediction. 

 
Apart linear regression also neural network (NN) was 

used, because it represented an emerging technology with 
some important characteristics, such as universal 
approximation (input-output mapping) and ability to learn 
from and adapt to their environment. Multilayer perceptron 
is feed-forward network. As learning algorithm we used 
generalized δ -rule or back-propagation (BP). The user 
interface provides regulation of the following parameters: 
number of layers, number of neurons in each layer, learning 
rate η and momentum termα . Parameters η  and α  could 
be changed during the training. Neurons in input layer act as 
buffers for distributing the input signals x(n)  to neurons in 
the hidden layer [11]. MP is usually used as pattern 
recognition tool, but from a systems theoretic point of view 
it can be also used for approximation of non-linear maps 
[11]. MP as a feed-forward network by its computational 
power could be compared to the fuzzy-logic systems.  

We also used Support Vector Machine (SVM) for 
Regression. The basic idea of SVM is to map the input 
space into a high dimensional feature space via non-linear 
mapping and to do linear regression in this space. The linear 
regression in a high dimensional feature space corresponds 
to nonlinear regression in the low dimensional input space. 
Vapnik showed that the functions that minimize the risk 
depends on the finite number of parameters and can be 
described by kernel functions. Empirical risk minimization 
is used to estimate the parameters of feature space, which 
realization is a quadratic programming problem and which 
outputs are support vectors [9, 10, 12]. The capacity of 
predictor is controlled by VC dimension [12]. In the paper 
we used ε -SVR variant of the algorithm with Platt’s 
optimization algorithm, called Sequential Minimal 
Optimization (SMO) [9]. 

4.  RESULTS 

The input parameters for the modelling consisted of two 
groups. The first group was a series of pairs of real 
physiological oscillometric envelope (Fig. 6) and resulting 
blood pressure levels, measured by a clinically validated 
commercial NIBP device Omron M6 (Table 1). The 
repeatability of Omron M6 device was proven by a series of 
90 measurements. When measuring artificial signals 
measuring errors of less than 1 mmHg were recorded for 
various blood pressure levels and heart rates. 

Healthy volunteer (SYS = 118 mmHg, DIA = 79 mmHg, HR = 60), Welch Allyn 
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Fig. 6. Oscillometric envelope, acquired by a blood pressure 
measurement of a volunteer SYS/DIA/HR = 118/79/60. 

Regression accuracy or the quality of predictor, which is 
prediction of SYS and DIA value, was estimated by means 
of the explained performance measures: correlation 
coefficient (CC), Mean Absolute Error (MAE) and root 
mean squared error (RMSE).  

Table 2 is giving the results of comparison of different 
types of models. RMSE is calculated by 10-fold cross 
validation. In bold-faced type are give the best results for 
each model (for example, for linear regression we achieved 
the best results for input length of 600, CC ≈ 1, MAE ≈ 2 
and RMSE=2.5. The best results of pressure modelling were 
achieved by a neural network, multilayer perceptron. Fig. 7 
is illustrating the RMSE dependence of the length of input 
vector |x(n)| in the modelling with neural networks. RMSE 
was estimated by means of 10-fold cross validation. The 
best result of SYS modelling was achieved for input length 
20, while the best result for DIA modelling was achieved for 
input length 45 (figure 7). 

 

Table 1: Statistics of 90 blood pressures measured by commercial NIBP device as one of the input parameters for data mining models 
(physiological signals were measured on 23 healthy volunteers totalling 90 measurements, SYS – systolic, DIA – diastolic blood pressure, 

HR - heart rate, AVG and STD of SYS, DIA and HR – average and standard deviation of 23 volunteers). 

 gender 
 

age 
 

(years) 

height 
 

(cm) 

weight 
 

(cm) 

upper-arm 
circumference 

(cm) 

SYS 
(mmHg) 

DIA 
(mmHg) 

HR 
(/min) 

AVG 32,0 173,6 70,2 26,8 113,5 73,8 69,2 

STD 
52 % male 

48 % female 14,7 9,6 14,2 2,9 9,6 8,3 9,3 
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Fig. 7. RMSE dependence of the length of input vector |x(n)| in the 
modelling with neural networks. The best result for DIA (the 

smallest RMSE=0.65) is estimated |x(n)|=45. The best result for 
SYS (the smallest RMSE=0.68) is estimated |x(n)|=20. 

Table 2. Modelling DIA pressure by means of data mining. 

 Linear regression Neural network SVR 
Input 
length CC MAE RMSE CC MAE RMSE CC MAE RMSE 

10 0,71 3,92 6,01 0,99 0,70 0,99 0,87 2,19 4,20 

100 0,90 2,36 4,31 1,00 0,60 0,79 0,95 1,77 2,60 

200 0,94 1,97 2,98 0,99 0,67 0,95 0,95 1,77 2,67 

300 0,90 2,39 3,67 0,99 0,71 1,08 0,95 1,79 2,70 

400 0,95 1,84 2,67 0,99 0,68 0,91 0,94 1,95 2,78 

500 0,95 1,79 2,67 0,99 0,93 1,34 0,95 1,83 2,76 

600 0,95 1,91 2,54 0,99 0,85 1,31 0,94 1,86 2,79 

800 0,66 4,04 6,35 0,99 0,94 1,44 0,87 2,37 4,21 

1000 0,88 2,37 4,61 0,98 1,06 1,54 0,94 1,82 2,82 

4.  CONCLUSIONS 

Nowadays, the oscillometric devices for blood pressure 
measurements are widely used in both clinical and home-
care environment. Due to their reasonable price they are 
widely accessible. They are much more often used as 
automatic auscultation devices, although these are usually 
more accurate and reliable. The core of any oscillometric 
device are very simple calculative algorithms in their 
microprocessors, which determine the systolic and diastolic 
blood pressure levels from the measured amplitude of 
oscillometric pressure pulses. The oscillometric devices 
main advantages are simplicity and straightforwardness of 
use and high accuracy when measuring a normo-tension 
patient. On the other hand they tend to develop measuring 
error when measuring severe hypertension patients, or 
patients with certain physiological properties 
(arteriosclerosis, heart arrhythmia). Oscillometry is known 
to be also quite sensitive to moving artefacts. 

In this paper we tried to investigate the possibility of 
substitution of the simple oscillometric algorithms with 
more complex ones, which would include also other 
important data describing the psychophysical state of the 
patient in order to enable a reliable functionality also in 
more demanding measuring conditions. Such an 
oscillometric device, which would estimate blood pressure 
by means of data mining modelling, should enable 
estimation of blood pressure for different levels and 
different amplitudes of oscillometric pulses with sufficient 
regression accuracy. The concept of personalised 

instrumentation includes extension of our modelling by 
adding attributes that describe the person involved in the 
measurement in more detail (physiological and 
psychophysical state of the person). Improvement of the 
regression accuracy is expected, if the modelling would 
consider certain attributes, which are confirmed by the 
research medicine as influence factors for hypertension (e.g. 
age group, arm circumference, emotional stress, white-coat 
hypertension, etc). We conclude that we have introduced the 
concept of personalised instrumentation and have proven the 
basic concepts in the case of non-invasive blood pressure 
measurements.  

Currently there are many presumptions and 
simplifications included in our methodology, which enable 
possible future improvements. One of the main 
simplifications was that the measured level of the blood 
pressure, as one of the inputs for teaching process, was not 
measured invasively or by a classic manual methods i.e. 
auscultatory mercury-in-glass sphygmomanometer. Instead 
we were using a commercial device, which was simpler to 
use, more suitable for assessing the repeatability of 
measurements, well maintained and calibrated with a clear 
metrological history, containing no neuro-toxins and which 
passed the clinical validation.  
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