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Abstract – The article describes the transplantation of Ma-
trix Method as an assessment of accuracy of coordinate mea-
surement for Large CMM. The method of the synthetic de-
scription of the accuracy is used successfully for small and
medium-sized CMMs. It is implemented for large measure-
ments as research project nr: PB 5T07/D03824. The issue
involves many problems, especially from a technical point of
view. This article presents experiments concerning connec-
tions between reference subspaces – the crucial elements for
implementation of Matrix Method.
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1. INTRODUCTION

One of the most important problems of metrology today is
the estimation of accuracy of coordinate measurement. Cur-
rently, used uncertainty model, based on the control length
measurement, does not fully reflect universal aspects of coor-
dinate measurement. This leads to a situation, where purchas-
ing decisions about CMM and subsequent decisions about the
type of measurements, are taken based on incomplete infor-
mation.

This problem became the impulse of works on methods of
accuracy assessment of coordinate measurement. Thanks to
the works, the proposition of connection of various methods,
appeared within the framework of the standard ISO 15530
[7].These works are the result of earlier research on accuracy
assessment of CMM, done mainly by PTB, where one of the
first virtual coordinate machine, giving the possibility of ac-
curacy assessment by simulation, was elaborated [6].

This model was based on earlier identified geometric errors
of CMM and errors from the probehaed. Similar model was
elaborated in Cracow University of Technology [1].

Thanks to arbitrary acceptance of error model, these sys-
tems can not map the behavior of CMM. That’s why the
change of approach succeeded. As the base, not only the an-
alytical error model of CMM was taken but also the synthetic
model, based on the error of mapping of measuring point.

The method of recreation of measuring point by the ma-
chine was called the Matrix Method [3, 4].

Information from the error of recreation of measuring
point, allows the later assessment of accuracy of any mea-
suring task for any construction of coordinate machine with
hybrid construction taken into account. It is caused by the

fact, that measurement of point coordinates is the direct mea-
surement (in coordinate metrology).

2. MATRIX METHOD

The base of Matrix Method is the acceptance of vector
character of error of recreation of measuring point (Fig. 1).
The error e is the difference between indication of point of
contact pm by the machine, treated as a leading vector ex-
tended from the beginning of coordinate system to this point,
and real point of contact of the probehead with the measured
space pa, treated here also as a leading vector.
It possible to present this by the following equation:

e = pm−pa (1)

In the research on errors of coordinate machines, it is pos-
sible to distinguish two errors from many of them, which de-
pend on the same CMM. It is the error from contact system of
CMM and error followed from geometric solution of the ma-
chine construction. Than the representation of error e from
the equation (1) is possible:

e = ecmm + eprb (2)

where ecmmis the error of recreation of the position of CMM
whereas eprb is the component from contact system of the
machine.

It was illustrated on Fig. 1.
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Fig. 1. Vector character of the error e



The error eprbis dependent on the direction of invasion
vector [nx,ny,nz] and used configuration of gauge plunger.
Whereas the error of position is dependent on XYZ position
of the measuring point in measuring space of CMM.

The measure of the accuracy of recreation of measuring
point by the machine in its measuring space is the sum of
the longest length of the vector ecmm and maximum length of
vector eprb what can be written by the equation:

UMM = max |eprb|+max |ecmm| (3)

2.1. Technical realization of the determination of UMM

The determination of the error eprb is connected with the
measurement of spherical artifact or artifact ring. In the sec-
ond case in publication [4]there was the proposition to mea-
sure this artifact 64 times. The diameter of this artifact should
not exceed 30 [mm]. Obtained information allows to iden-
tify the error eprbin perpendicular direction. It is sufficient in
measurements of mechanical parts where the direction of in-
vasion on the measuring point is usually perpendicular (mea-
surements of the holes) or parallel (measurements of surfaces)
to the tip axis.

However, taking into account the growing number of mea-
suring tasks connected with the control of elements with
curved spaces of freedom like the measurements of body of
the car elements or geometry of car windows and also turbine
blades, the error eprb need to be identified on the basis of the
measurement of spherical artifact, where the research, lead-
ing to determination of the error as the function dependent on
all three direction of the invasion, is possible to be done.

In the case of the determination of the error ecmmthe elabo-
ration of the network of referee points in measuring space of
the machine is necessary. In the uniformly spaced points in
network, determination of error of recreation of position by
CMM is possible.
The technical realization of the network is based on plate ar-
tifact. The realization consists in measurement of the artifact
in various positions and three orientations parallel to the main
surfaces of the measuring space. Thanks to that, in this space,
the network of referee points is created and these points are
the centres of the referee elements of the artifact.
On the Fig. 2 this method is presented.

In this case the artifact is measured in parallel to the three
main surfaces of the measuring space. From the obtained lo-
cal deviation dx and dy, in particular surfaces, there is the
possibility to determine the spatial error pp in accordance with
the equation:

ecmm =
1
2

 dxXY +dxXZ
dyXY +dxY Z
dyXZ +dyY Z

 (4)

The devation dxXY means the deviation of the plate, in direc-
tion of local axis x, settled in measuring space of the machine
in parallel to surface XY. Particular coordinates of the vector
pp are, in this case, determined as the diameter of the devia-
tions in the same direction from the two mutually perpendic-
ular positions of the artifact.
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Fig. 2. The positions of the plate artifact to built the network of
reference points

3. MATRIX METHOD FOR LCMM

Within the framework of research project
PB:5/T07/D03824 it was decided to transpose Matrix
Method on LCMM.
Lots of problems ware found connected with technical
realization of the network of referee points in measuring
spaces of LCMM. It is mainly connected with lack of the
artifacts, which could be the substitute used in small and
medium-sized machines.

he solution is the elaboration of networks of points in sub-
spaces — where the measurements are most often made.
Than subspaces can be built with the help of plate artifacts,
nowadays available on the market for small and medium-
sized machines. The build method is the same what in matrix
method for the machines of smaller measuring spaces(Fig. 2).

However there is the problem with connection of the sub-
spaces. There is the possibility to use the overlap method and
try to cover all the measuring space of LCMM but this is long
process and it can lead to considerable errors caused by move-
ments of artifact [6].
The connection is in order to connect two subspaces in one.
Thanks to that, there is the possibility to find out what is the
error of position of machine in a case when the beginning of
the coordinate system is in one subspace and the measuring
point in other subspace. In this case the connection is the vec-
tor, which allows to create one subspace instead of two. The
problem is illustrated on Fig. 3

The vector vI−II is the vector which connect the subspace
PIwith the subspace PII .Assuming that the beginning of the
system is in subspace PI we want all the research points to be
connected with this subspace. That’s why in the case when
the measuring point is in subspace PII the error e(I−II)

cmm is:

e(I)
cmm = vI−II + e(II)

cmm (5)

The aim of the research is determination of the vector vI−II .
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Fig. 3. The connection of subspaces

One of the possibilities was the movements of plate artifact
with the help of guides and control of its position and orien-
tation with the help of laser interferometer. The conception
of this construction is presented in [5]. Farther work on this
solution did not bring satisfactory results. That’s why it was
decided to use the analytical model of geometric errors as the
connection between the particular subspaces.

This model describes the error of measurement by the
equation [6]:

E = T +A ·X +Ap ·Xp (6)

where T is the vector summing the errors of translation , A —
the matrix accumulating the errors of rotation having an in-
fluence on the measurement by referee tip , X — Coordinates
of referee point , Ap —matrix accumulating the errors of ro-
tation having an influence on indication of CMM in case of
using no-referee tip in measurement Xp — vector extended
between referee tip and tip used to the measurement.

To create the connection between subspaces, the informa-
tion about errors of position xtx, yty, ztz and error of trans-
lation, being in the vector T, is not enough. The information
about the errors in matrix A is also needed.
It can be written that the error of position Ep is:

Ep = T +A ·X (7)

where [6]:

T =

 xtx+ xty+ xtz
ytx+ yty+ ytz
ztx+ zty+ ztz

 (8a)

A =

 0 −ywz− xrz xwz+ xry+ yry
0 0 −ywz− xrx− yrx
0 xrx 0

 (8b)

X =

 x
y
z

 (8c)

Determination of these errors is possible with the help
of laser interferometer or artifacts. In the case of LCMM
the possibility of use of two-dimensional artifacts is limited.
That’s why the procedure concerning determination of ge-
ometric errors LCMM using Laser Step Gauge was elabo-
rated [2].

Application of position error Epleads to determination of
the error which would be done by the machine in beginning
point of subspace PII if the coordinate system would be in sub-
space PI . So the conclusion that vector vI−II is:

vI−II = Ep(PII
0 )−Ep(PI

0) (9)

where Ep(PII
0 ) is the error of position determined in accor-

dance with equation (7) for the beginning of subspace PII .

4. RESEARCH

Within the framework of research, above method, concern-
ing determination of accuracy, was verified on the basis of
the assumptions of matrix method using subspaces. Research
done on GLOBA IMAGE machine was divided in two parts:

1. Determination of subspaces in order to determination of
the error ecmm in subspaces.

2. Determination of geometrical errors CMM in order to
determination of connection between particular sub-
spaces.

4.1. Determination of the error ecmm in control subspaces

Within the framework of research the spherical plate in
scale 1:2 was made in comparison to common spherical plates
(Fig. 4. Thanks to it, the simulation of the conditions of
LCMM was possible using medium-sized machines. We
could also compare obtained results from the method based
on determination of subspaces with the method described in
[4]. Within the framework of research four control spaces
were determined in the way, that two of them overlapped on
last two. In Fig. 5the particular positions are presented in di-
agram.

The building of the subspace was carried out in accordance
with the diagram showed in Fig. 2.Each position of the plate
was measured few times in order to determinate the variation
of the error ecmm of the machine.

Obtained results for subspace PIare presented in Fig. 6

4.2. Determination of position error CMM on the basis of
geometrical errors

Determination of geometrical errors CMM was the next
step in research. Their identification allows to determine the
position errors Ep for the beginnings of systems of subspace.

In order to determinate the position errors, the laser
interferometer ML GOLD Renishaw with the set to
measurements of rectilinearity, rotation and also mutual
perpendicularity errors was used. In accordance with
the equations (7-8b) the following geometrical errors:
xtx,xty,xtz,xrx,xry,xrz,yty,ytx,ytz,yry,yrx,yrz,ztz,ztx,zty
along specified axes and also mutual perpendicularity axes
errors were determined. Fig. 7 shows the determination of
error ztx using Wollastone V-block and the results.



Fig. 4. Ball-plate to verification of the method

Fig. 7. Determination of geometrical error ztx and obtained results

Determined errors Ep of all subspaces in Fig. 5 are pre-
sented at in Tab. 1

Fig. 5. Particular positions of control subspaces in measuring space
CMM
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Fig. 6. Determined subspace PI

Tab. 1. Error Ep for particular beginnings of subspaces
nr subspace vector Ep

X Y Z X Y Z
I 386.0 146.0 -647.1 -0.0035 -0.0015 -0.0003
II 51.0 709.0 -647.1 -0.0010 -0.0025 -0.0008
III 175.5 584.5 -647.1 -0.0045 -0.0039 -0.0013
IV 258.5 270.5 -647.1 -0.0041 -0.0029 -0.0008

It allows to determine the vector of connection v in accor-
dance with (9) in further stage.

4.3. Determination of error eprb

In further part of research the error eprb was determined.
It was done by the measurement of spherical artifact in 16th
intersections form the equator to the pole. On the equator the



sphere was measured in 64 points. The number of points was
decreased with the intersection so there was only one mea-
surement on the pole.

4.4. Determination of the uncertainty of positioning

Determination of error Ep for particular subspaces allows
to describe the error ecmm for the research space. In accor-
dance with (3) this error is the maximum length of the vector
determined in accordance with equation (5).

Obtained maximum values of error ecmm for particular sub-
spaces are in Tab. 2.

Tab. 2. Values up for each subspace
Subspace up

PI 0.0014[mm]
PII 0.0026[mm]
PIII 0.0031[mm]
PIV 0.0023[mm]

The vectors of connections between particular subspaces
are presented in Tab. 3

Tab. 3. Vectors of connection between particular subspaces
subspace PI PII PIII PIV

X -0.0045 0.0025 0.0016
PI Y -0.0025 0.0039 0.0019

Z 0.0005 0.0010 0.0005
X 0.0045 0.0035 0.0031

PII Y -0.0025 0.0014 0.0006
Z -0.0005 0.0005 0.0000
X -0.0025 -0.0035 -0.0009

PIII Y -0.0039 -0.0014 -0.0020
Z 0.0010 -0.0005 -0.0005
X -0.0016 -0.0031 0.0009

PIV Y -0.0019 0.0006 0.0000
Z 0.0009 0.0020 0.0005

Using the results from table 2 and 1, determination of er-
ror ucmm is possible as a maximum error of position in re-
search space. For the research machine the final value ucmm is
0.0045 [mm].

5. ASSESSMENT OF MEASURING POINT
ACCURACY

Research with small and medium-sized machines showed
that there is the possibility to use matrix method to accuracy
assessment of coordinate measurement [3].

In information which are obtained from determination of
error eprb and ecmm allows to determine the uncertainty of
recreation of mesuring point by research CMM. This action
is showed in diagram (8)

In order to approximate the function of errors
eprb(nx,ny,nz) and ecmm(X ,Y,Z) the neuron networks
were used. The other network was used to simulate the
position error and other to approximate the errors of contact
system. Teaching files were prepared on the basis of files

Nominal point (X ,Y,Z,nx,ny,nz)

simulation of ecmmsimulation of eprb

result of simulation [X ,Y,Z]+ e

[X ,Y,Z][nx,ny,nz]

ecmmeprb

[X
,Y

,Z]

Fig. 8. Virtual measuring machine — determination of uncertainty
of measuring task

obtained from the determination of uncertainty of measuring
point of CMM. The working method of the simulator was
presented on the diagram Fig. 9.

Measuring task

Nominal poitns

Simulation

M
ea

su
ri

ng
pr

og
ra

m
m

Virtual points

Calculated task

Evaluation of uncertainty
for measuring task

n
×

re
pe

at
Fig. 9. Virtual measuring machine — determination of uncertainty

of measuring task

For the given measuring task, data about nominal points
(coordinates and invasion vector) from the computer program
are taken. They are simulated appropriate number of times
in a virtual measuring machine. Obtained measured virtual
points are used to determination of measuring task again also
n-times. Than from the obtained multiple result, the determi-
nation of uncertainty of measurement is possible.

In the case of this method it is very important that except
averaging data, teaching files need to obtain the information
about the variation of specified errors. It can be the standard
deviation in particular points of network of referee points or
in case of error of head eprb standard deviation dependant on
invasion angles.
Taught neuron networks can, except averaging error e, give
appropriate standard deviation what can be used in simulator
to simulate the normal distribution with the help of appropri-
ate function. In this way simulated error e can be also saddled
with error component.



6. SUMMARY

In the article the technical realization of connection of sub-
spaces of referee points on the basis of analytical model of
geometrical error LCMM was presented.

Then there is the possibility to elaborate the method of de-
termination of measuring errors of coordinate machine and
assessment of accuracy of this measurement.

Nowadays this problem is especially essential because of
the possibilities accuracy assessment of real coordinate mea-
surements with the help of the method based on simulation of
coordinate measurements.
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