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Abstract − This paper discusses the effect of residual 

components on type A uncertainties determined by multiple 
linear regression of quadrature homodyne output signals. 
Primary accelerometer calibrations employing the sine-
approximation method allow the determination of the fit 
uncertainty through the covariance matrix. Frequency 
components that are not included in the regression model 
lead to increased uncertainties. The uncertainty obtained 
from the regression is therefore not exclusively due to 
random data variance at the calibration frequency, but due to 
deterministic error of the model. Analysis of the regression 
residues and a correction method is proposed to obtain more 
realistic uncertainty values. Some results obtained from 
simulated data sets are presented. 
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1.  BASIC INFORMATION 

The sine-approximation method [1] is being widely 
applied by National Metrology Institutes (NMI) to perform 
primary calibrations of accelerometers. It is applicable to a 
wide frequency range and allows determination of the 
magnitude and phase shift of the complex sensitivity of 
vibration transducers. It is based on the measurement of the 
quadrature output signals I and Q of a homodyne 
interferometer 
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where Î and denotes the magnitude of the in-phase and 
the in-quadrature components of the total interferometric 
phase 

Q̂

Modϕ . 
An arctangent demodulation scheme can be applied to 

these signals to obtain the total interferometric phase 
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which can by expressed by the discrete relation 

 ( ) )]cos(ˆ[ 10 siMiMod tt ϕωϕϕϕ ++= , (3) 

 

where 0ϕ  is the initial interferometric phase, Mϕ̂  is the 
magnitude of the modulated phase, 1ω  is the angular 
frequency of the vibration and sϕ  is the displacement phase. 
This equation can be rewritten as 

 ( ) iiiMod tbtbbt 12110 sincos ωωϕ −+=  (4) 

and the unknown coefficients b can be obtained by a 
multiple linear regression. The sine-approximation method 
refers to fitting a sine wave to the experimental data of the 
total interferometric phase. 

Equation (4) can be written in matrix format 

 εβ += XY , (5) 

where Y is a 1×n  vector containing n observations of the 
dependent variable ( )iMod tϕ . X is a matrix of dimension 

3×n  with known shape, β is a  vector of independent 
variables b and ε  is a 

13×
1×n  vector of errors. 
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Both β and ε are unknown in this equation, but it is β for 
which we want to solve the problem. The solution by the 
least squares method [2] [3] furnishes the vector b as the 
best estimate of  β . The vector b is calculated by 

 . (7) YXX)(Xb T1T −=

The amplitude of the modulated phase Mϕ̂  and the 
displacement phase sϕ  can be calculated by the equations 
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The amplitude of the displacement is then determined by 
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According to eq. (8), the combined standard uncertainty 
of the magnitude of the modulated phase is 
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where  and  are the variances and )( 1
2 bu )( 2

2 bu ( )21,cov bb  
is the covariance associated to the coefficients b1 and b2. 
These values are given by the variance-covariance matrix 

 V(b)
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where σ 2 is an estimation of the quadratic arithmetic mean 
of the residues of the regression, obtained by dividing the 
quadratic mean of the residues by (n-3) degrees of freedom. 
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Then, the variances of coefficients b are obtained from the 
diagonal terms of matrix V(b), where = V)( 0

2 bu 00, 

= V)( 1
2 bu 11 and = V)( 2

2 bu 22 and the covariances are 
obtained from the off-diagonal terms = V( 21,cov bb ) 12 = V21. 

The expanded uncertainty of Mϕ̂  is calculated by 
multiplying the combined standard uncertainty )ˆ( Mcu ϕ  by 
a coverage factor kp chosen on the basis of a level of 
confidence required for the interval.  

  (14) )ˆ()ˆ( McpM ukU ϕϕ =

The determination of the uncertainty through the 
analysis of the residues requires a careful analysis to assure 
that the regression model is representative of the data. This 
condition requires that the residues have a null mean and a 
variance σ 2.   

It should be highlighted that even if we have a perfect 
identification of the target amplitude and phase, the 
uncertainty given directly by regression may not represent 
this match. This may happen because the uncertainty 
depends on how the fit model represents not only the 
waveform at the frequency of interest (i.e. the driving 
frequency in the case of the SAM) but the observed signal as 
a whole. The uncertainty may include, besides the 
component due to the random variance of the observed data, 
an undesired systematic error of the model (bias).  

If there are other periodic components significant 
compared to the amplitude of the motion at excitation 
frequency f1, and are not included in the regression model, it 
will occur an over estimation of the uncertainty, because the 
variance V(b) depends directly on the variance of the 
residues σ 2. This effect typically occurs due to hum, non-
linearities as harmonic distortion, structural vibrations,  
inadequate vibration isolation, etc. 

Dobodsz et al. [4] have suggested to consider a normal 
distribution of the residues with a standard distribution of 

3/b , where ± b represents the limits within the residues 
are included. This method can be applied to evaluate the 
uncertainty of the amplitude of the total interferometric 
phase Mϕ̂ , but not for the displacement phase sϕ . Even in 
the case of amplitude, it is necessary to establish the limits 
± b through evaluation of the random dispersion around the 
remaining deterministic signals present in the residues. 

An alternative method has been evaluated through 
computational simulations with very good results. It consists 
in adapting the regression model in order to include all the 
main spectral components present in the signal. In the 
specific case of the sine-approximation method, this 
alternative may not be feasible to be applied due to the large 
amount of data involved. It is usual to have vectors of 
observations in the order of 10  to 10  being processed. The 
increase of the dimensions of matrix

5 6

 X requires an increase 
in computational power, which may turn the processing of 
the regression unviable. Each new spectral component added 
to the model would require the addition of two new columns 
to matrix X. 

A more versatile method is proposed in the next section. 

2.  PROPOSED METHOD 

The approach proposed in this paper consists in 
correcting the deterministic error from the uncertainty 
determined by linear regression. 

First, a calibration must be run with the determination of 
the uncertainties for amplitude and phase shift estimated by 
multiple linear regression. Then the residues shall be 
analyzed. This can be done by a set of statistical tools, 
which were implemented in LabVIEW environment. The 
program developed provides the following graphs for 
analysis: 

• Residues x time,  
• Residues x estimated regression value 
• Histogram of residues normalized by the standard 

deviation 
• Residues normalized by the standard deviation x 

cumulative percentage 
• Residues x frequency  

 
These graphs allow the user to visually check the 

distribution of the residues and to verify how close they are 
to a normal distribution N(0, σ 2). They provide evidences 
that help the evaluation of the degree of inadequacy of the 
SAM model and of the overestimation of uncertainty. 

The residues can also be analyzed in the frequency 
domain. This allows the non-modeled spectral components, 
which are significant in the residues composition to be 
detected easily. After applying the Fourier transform to the 
residues, a peak-picking algorithm is applied for 
identification of the amplitudes of major spectrum peaks and 
their corresponding frequency values. 

After the identification of the main secondary spectral 
components responsible for the distortion of the residue, it is 
possible to generate a deterministic multi-tone signal with 



null variance, combining these secondary components with 
the fundamental component. A new regression using the 
same model as used before can then be applied to this 
simulated signal. The magnitude and phase uncertainty 
values obtained for the simulated signal can then be used for 
correction of the uncertainty obtained for the observed data 
by the relation 

 ( ) ( )simexpcor uuu Ψ−Ψ=Ψ 22)( , (15) 

where 
u(Ψexp) –  amplitude or phase uncertainty estimated by the 

SAM applied to the observed data, 
u(Ψsim) –  amplitude or phase uncertainty estimated by the 

SAM applied to the multi-tone simulated data, 
u(Ψcor) –  corrected amplitude or phase uncertainty. 

 
It should be noted that the multi-tone simulated signal 

vector generated for the correction applying eq. (15) 
requires the use of the same sampling rate and number of 
samples as in the observed data vector. This procedure is 
important to maintain the same conditions during both 
regressions. 

3.  EXAMPLES 

Two examples are presented in this section to show how 
the computational program developed at Inmetro is used to 
perform the statistical analysis of the sine-approximation 
method. The correction method proposed in this paper is 
applied to the second example, in order to demonstrate its 
feasibility. 

The signals used in the two following examples were 
generated using the following equation 
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This equation shows that the signals simulated were 
composed of a sum of sine waves and noise.  In our case, the 
noise term was assumed to be a uniformly distributed 
pseudorandom noise with amplitude . This noise was 
obtained by multiplying the output of a noise generator n(t), 
which varies in the range [-1, 1] by a scaling constant  . 

ŵ

ŵ

3.1. Example – Sine wave plus noise (WF1) 
The aim of this first example is to present the output of 

the computational program when applied to a single sine 
wave embedded in pure random noise. The waveform WF1 
used for this purpose is composed of a single unit-amplitude 
10 Hz sine wave and 0.05 amplitude noise. 

Two panels of the computer program are presented in 
Fig.1. 

Fig. 1 (a) shows the panel “Fit Graph”, which includes 
the regression parameters magnitude, phase and dc offset 
obtained by applying the sine-approximation method to the 
observed signal, the amplitude and phase uncertainties 
estimated and a graph including the observed data, the fitted 
sine wave, the limits of the true mean and the limits for 

individual observations of a given input assuming a level of 
confidence of 95%. 

In this example, a 0.00006% relative error was verified 
in the fitted amplitude value and a 0.23% relative 
uncertainty was obtained for a 95% confidence level. 

 
(a) Screen “Fit Graph” 

 
(b) Panel “Residues” 

Fig. 1.  Program for analysis of the SAM uncertainty - Simulated 
input signal: , = 10 Hz, noise amplitude = 0.05; 

sampling configuration: Fs=1000, N=1000. 
1ˆ1 =A 1f ŵ

The panel “Residues” presented in Fig. 1 (b) includes 
diverse graphical representations of the regression residues. 
The graph Residuals x Time demonstrate that the 
distribution of the residues against time for this first 
example show an adequate aspect of randomness. This is 
confirmed by a nearly Gaussian symmetric distribution 
within the limits of ± 3 σ in the Histogram of standard 
residuals. In addition, the plot Standard residuals x 
Cumulative percent show that  the standard residuals are 
close to the straight line of the fitted data and the plot 
Residuals x predicted Y gives evidence of random 
distribution of the points. In the frequency domain there is 
no evidence of any considerable spectral components in the 
residues.  



3.2. Example II – Multi-sine wave plus noise (WF2) 
In order to exemplify the effect caused by secondary 

spectral components on the sine fit uncertainty, a waveform 
WF2 composed of a primary sine wave plus three additional 
secondary sinusoidal components and random noise will be 
used. The signal was generated using eq. (15) with the 
following parameters: = 2, = 0.3, = 0.2, = 0.1, 
f

1Â 2Â 3Â 4Â

1 = 100 Hz, f2 = 20 Hz, f3 = 40 Hz, f4 = 60 Hz, 1θ =100°, 
= 0.05. A sampling rate of 1000 samples/s and 1000 

samples were used to generate the signal. The results 
obtained for this signal WF2 are presented in Fig. 2.   

ŵ

 
(a) Panel “Fit Graph” 

 
(b) Panel “Residues” 

Fig. 2.  Program for analysis of the SAM uncertainty - Simulated 
input signal WF2: = 2, = 0.3, = 0.2, = 0.1, =100°, 

noise amplitude = 0.05;  f
1Â 2Â 3Â 4Â 1θ

ŵ 1 = 100 Hz,  f2 = 20 Hz,  f3 = 40 Hz,  
f4 = 60 Hz; sampling configuration: Fs=1000, N=1000. 

Fig. 2 (a) shows that the amplitude value determined by 
applying the multilinear regression to signal WF2 was 
2.0047. This result represents a 0.024% error relative to the 
amplitude originally used to generate the signal (i.e. = 2). 
On the other hand, a quite high uncertainty of 1.17% is 

obtained for a 95% confidence level. This increased 
uncertainty is caused by the lack of agreement between the 
single-sine regression model and the actually observed 
signal. 

1Â

In Fig. 2(b), the lack of fit is evident in the different 
graphs. The presence of spectral components in the residue 
is visible in the frequency domain, with the respective 
frequencies and amplitudes being presented in the tables in 
the lower right part of the panel. The periodic behavior of 
the residuals is also easily detected in the plot Residuals x 
time. 

The amplitude and phase results and the associated 
uncertainties determined for this example are presented in 
the Table 1. The results obtained for the original observed 
signal WF2, are presented in the first row and for the multi-
tone simulated signal (MTS), generated according to the 
correction procedure proposed are presented in the second 
row. The multi-tone signal MTS was generated using four 
sine waves with amplitude and frequency values 
corresponding to the primary component estimated by the 
sine-approximation method (shown in Fig. 2(a)) and to the 
three remaining secondary components observed in the 
residues. These values were taken from the two tables in the 
lower right part of the panel Residues, shown in Fig.2 (b). 
The parameters of the multi-tone simulated MTS signal 
generated are compiled in Table 2. 
 
Table 1. Results of the procedure applied to a multi-tone waveform 

plus noise

Signal 1Â  U( )/  
[%] 
1Â 1Â 1θ  

[°] 
U( ) 1θ

[°] 

WF2 2.00047 1.16908 100.34 0.670 

MTS 2.00047 1.16213 100.34 0.666 

Corrected 
uncertainty  0.12729  0.0728 
     

REF 1.99922 0.12705 99.93 0.0729 
 
 

Table 2. Parameters of the multi-tone simulated signal generated 
for correction of the uncertainty values.

Composition of 
MTS 

Frequency 
[Hz] 

Amplitude Phase [°] 

1ˆsimA (t) 100 2.00047 100.34 

2ˆsimA (t) 20 0.30032 0 

3ˆsimA (t) 40 0.20034 0 

4ˆsimA (t) 60 0.09812 0 

 
 

The results in Table 1 show that the relative uncertainty 
of amplitude was reduced from 1.17% to 0.13% and the 
uncertainty of phase was reduced from 0.67° to 0.07° after 
applying the correction procedure proposed in this paper. 
Therefore, a reduction of one order of magnitude was 
obtained for both amplitude and phase uncertainties in this 
example. These corrected uncertainties are very close to the 



ones obtained when applying the sine approximation method 
to the waveform REF, generated exclusively with the 
primary component and noise. The parameters used to 
generate REF were the same ones used for the primary 
component in WF2: = 2, =100°, = 0.05. Table 1 
includes the results obtained for REF in row 5.  

1Â 1θ ŵ

4.  CONCLUSIONS 

The analysis of the residues is currently not properly 
considered by many users of the sine-approximation 
method. Common statistical tools and visual analysis of 
graphs in time and frequency domain may provide valuable 
information about the calibration system and about the 
quality of the results obtained.  

The sine-approximation method is based on the fit of a 
sine wave to experimental data. The basic assumption is that 
the observed data from the homodyne interferometer and 
from the accelerometer under test can be represented by a 
single sine wave with frequency equal to the oscillatory 
motion plus some random noise. Unfortunately, secondary 
spectral components may be embedded in the observed data 
due to the presence of harmonic distortion, hum, relative 
motion between seismic blocks, shaker resonances, etc. 

The lack of agreement between the regression model and 
the observed data reflects on increased uncertainties 
obtained from the variance matrix. 

The method proposed allows the correction for obtaining 
a more realistic evaluation of the type A uncertainty 
determined by the sine-approximation method.  

The correction can be applied to the uncertainty of both 
magnitude and phase of the fitted sine wave. The same 
methodology described herein can be extended to many 
other analysis of linear regressions, where the model can not 
be properly adapted to better fit the observed data. 
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