
XIX IMEKO World Congress
Fundamental and Applied Metrology

September 6−11, 2009, Lisbon, Portugal

AN INTERNATIONAL HARMONISED MEASUREMENT SOFTWARE GUIDE:

THE NEED AND THE CONCEPT

Norbert Greif 1, Graeme Parkin 2

1 Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin, Germany,
Norbert.Greif@ptb.de

2 National Physical Laboratory (NPL), Hampton Road, Teddington, TW11 0LW, United Kingdom,
Graeme.Parkin@npl.co.uk

Abstract − Software is an intrinsic part of measurement.

It is used in instruments to control experiments, store and
process measurement data, analyse and display results and
to implement mathematical techniques. Some innovations in
measurement have been enabled through the use of software
for simulations or complex analysis. For example, the
international temperature scale ITS90 requires the
processing of high order polynomials and can only be
implemented using software. Given this reliance,
improvements in the quality of software and reduced cost of
its development are vital to the effective delivery of
metrology.

Keywords: measurement software, software quality,
software development, software assessment

1. INTRODUCTION

The Physikalisch-Technische Bundesanstalt (PTB) and
the National Physical Laboratory (NPL) have been working
on how best to produce or show that software is fit-for-
purpose [1-3]. Over the last year they have been working
together to develop a new international guide for the
development and assessment of measurement software.

This paper gives the purpose and rationale for such an
international guide. It also describes what work has been
done and how we currently intend to make it international.

2. PURPOSE OF THE GUIDE

The purpose of the international guide is to enable

• developers of measurement software to know what

they have to do to produce fit-for-purpose software,
and

• assessors of measurement software to confirm that

the developed software is fit-for-purpose.

By fit-for-purpose software we mean software that meets
domain-specific measurement standards, relevant software
quality standards and best software engineering practice.

The guide will also

• include a glossary of software terms to provide a

common understanding of terminology in software
development, software verification and validation
and further essential phases of the software
lifecycle;

• give descriptions of appropriate techniques to be

used in the development and assessment of
software;

• provide risk categories with the appropriate

techniques to be used for each risk level (see section
4);

• provide checklists for developers and assessors; and

• where possible provide examples.

Although assessors of measurement software have a

different perspective than the developers of measurement
software, both are considered together. The reason for this is
that the assessor needs to understand what the developer can
reasonably provide to demonstrate the integrity of the
measurement software. Equally, the developer needs to be
aware of the legitimate concerns of the assessors in order to
provide assurance in a manner that can be accepted by the
assessors. In a competitive market, a consistent and
transparent approach to quality assurance for measurement
software is required.

3. THE NEED AND MAIN AIMS OF THE
GUIDE

The following sections discuss the need and the main
aims of the guide and the approach to deliver these aims.
The common view of PTB and NPL is presented.

3.1. The need
Software is an intrinsic part of metrology. It is used in

instruments to control experiments, store and process

measurement data, analyse and display results and to
implement many mathematical techniques.

Some innovations in metrology have been enabled
through the use of software for simulations or complex
analysis. For example, the international temperature scale
ITS90 requires the processing of high order polynomials and
can only be implemented using software. Given this
reliance, improvements in the quality of software and
reduced cost of its development are vital to the effective
delivery of metrology.

However, due to the increasing complexity and
dependency on software, there are considerable concerns
over its quality. A study by NIST [4] stated that “Software
bugs, or errors, are so prevalent and so detrimental that they
cost the U.S. economy an estimated $59.5 billion annually”.
There is every reason to believe that Europe suffers in a
similar way. NPL’s recent audits of some instrument
manufacturers, based on Software Support for Metrology
(SSfM) Best Practice Guide 1, Validation of Software in
Measurement Systems [3], and several examinations of
measurement software carried out by the PTB’s Software
Testing Laboratory [2], have indicated that software
engineering techniques are not widely used.

Today, there does not exist a comprehensive
international software guide which can be used by
measurement scientists and practitioners to overcome the
deficiencies in software quality. A software guide that has
been developed and accepted by leading NMI’s would be
more widely used and effective in the measurement
community.

3.2. Main aims of the guide
In the following, the aims of the guide are summarised.

Who is the guide for?
The guide is aimed at those who implement and assess

measurement software. These include at least measurement
scientists, instrument manufacturers, testing and calibration
laboratories.

Structure and type of the guide
Due to the complexity of software development it is

expected that there will be one main guide and some
supplementary guides. The supplementary guides will
include more detailed information on specific software
aspects, e.g. programming language style and coding
standards or static analysis.

The main guide will be developed first and will be
practical, short, and self-contained.

Types of measurement software
The guide will cover all types of measurement software

including COTS (Commercial Off The Shelf) software,
embedded software, control of instruments, mathematical
processing and graphical user interfaces. Measurement
software can be implemented in a laboratory or in an
instrument.

Risk-based approach
No software can be shown to be completely error free

due to the infeasibility of complete testing and
impracticality of mathematical proof.

The application of various techniques can reduce the
number of errors in the software, but the more techniques
that are applied the more expensive the software is to
develop. It is clear that software to be used in a safety-
critical environment will require more effort than that in a
non safety-critical one.

A risk-based approach provides a means to determine
how much effort should be used in the development of
software that is suitable for the type of software and for the
consequences of when it goes wrong (see section 4).

Process view versus product view
By process view we mean gathering evidence during the

development of the software to show that the software is fit-
for-purpose as compared to testing the final (or some
intermediate) software product as a black box.

The guide will consider both aspects of software quality
and will concentrate on the process of providing evidence
that the software product is fit-for-purpose.

Software lifecycle
The whole software lifecycle will be considered as it all

affects whether the software is fit-for-purpose. To serve as
the base for the software guide, a software process reference
model is being derived from the international standard
ISO/IEC 12207 [5].

Due to the aim of practicability, only the essential key
process areas are being selected. Currently, it is proposed
that the process reference model includes requirements
analysis, design, implementation, testing, and
operation/maintenance.

Structuring the software development process helps to
categorise the diversity or the recommended development
and assessment techniques, and the different activities of the
lifecycle processes.

Relationship with other standards
There are many software standards covering different

aspects of software. However, they do not cover what this
guide will include. Where necessary, relevant software
standards will be taken in consideration. Currently, these
include: ISO/IEC 12207 [5], IEC 61508 [6], ISO/IEC 15504
[7], ISO/IEC 27005 [8], and the ISO/IEC 25000 series [9].

Wherever applicable, procedures, requirements, and
recommendations of the guide will be traced back to
relevant software standards.

4. CURRENT STATE OF THE RISK-BASED
APPROACH

The guide will provide a risk assessment procedure
based on the international standard ISO/IEC 27005 [8].
According to this standard, at first the guide will define risk
categories based on measurement software specific risk
factors with appropriate risk levels.

To keep simple the risk assessment and the following
procedure of determining recommended measures
(techniques) for each risk category, in a second step, the set
of risk factors with different risk levels is mapped to a
unified risk index, the so-called Measurement Software
Index (MSI).

For each of the considered software lifecycle processes
(see section 3), selected development and assessment
techniques have to be assigned to the defined sublevels of
the MSI.

To provide a simple risk assessment procedure, PTB and
NPL are proposing the following restricted fundamental
process:

• Initially, the basic risk factors are restricted to three:

� level of control complexity
(complexity of software interaction),

� level of processing complexity, and

� level of system integrity, which is
considered to be composed of at least the
criticality elements safety issues, security
issues, or environmental issues.

� However, the proposed risk factors and
corresponding levels can be expanded by
further domain-specific aspects if needed.

• The number of risk levels for each basic risk factor

is restricted to four (very low, low, high, very high).

• The number of risk levels for the general
Measurement Software Index MSI is restricted to
five (0, 1, 2, 3, 4).

In the first part of the risk assessment procedure, for

each of the three basic risk factors and for each of its four
risk levels (very low, low, high, very high), a set of
measurement software oriented characteristics has been
drafted to derive the relevant risk level. Characteristics for
the risk factor control complexity are, for example,

• the impact of software control functions on the

measurement process,

• the influence of the software on the measurement

result or

• the number and complexity of software interactions
with other software/hardware subsystems.

Based on the risk-oriented characteristics of the three

basic risk factors, a proposal for a general MSI level (a
function of the basic risk categories) has been elaborated.
Each combination of the basic risk factors, including the
combinations of the different risk levels, has been mapped
to a MSI of 0 to 4 (five levels).

Finally, these proposals for the applicable MSI levels
have been summarised in a table to support the user in the
risk treatment process. The proposed MSI levels need to be
checked.

The remaining problem is the assignment of appropriate
software development and assessment techniques to be used
to the MSI levels. For each of the five MSI levels, the guide
has to recommend which techniques and, specifically, what
level of activity for each lifecycle process should be used.
For that purpose, the following are being developed:

• a list of practical development and assessment

techniques;

• appropriate levels of activities for each selected

software lifecycle process (process requirements);

• assignments of selected techniques and process
requirements to the MSI levels for each of the
selected lifecycle processes.

Based on the agreed assumptions and the final decisions

to be derived, a simple risk assessment procedure according
to ISO/IEC 27005 [8] will be implemented by the guide.
Thus, the user of the guide can ensure that the user’s
software is fit-for-purpose concerning the main risks of the
user’s specific domain.

5. WAY FORWARD: JCGM AD HOC GROUP
ON MEASUREMNT SOFTWARE

An ad hoc working group has been set up under the Joint

Committee for Guides in Metrology (JCGM) [10] which is
associated to BIPM (The International Bureau of Weights
and Measures). The main objective of the JCGM ad hoc
group on measurement software [11] is the elaboration of a
guide for the development and assessment of measurement
software. The guide would assist

• developers of measurement software in the

production of software that is fit-for-purpose; and

• assessors of measurement software in confirming
that developed software meets its specification.

All drafts of the guide will be made available for review

by as many interested persons and organisations as possible
including at least the

• JCGM ad hoc group on measurement software;

• JCGM member organisations not represented in the

JCGM ad hoc group on measurement software;

• National Measurement Institutes; and

• instrument manufacturers.

Further information regarding the JCGM ad hoc group
are available from the open BIPM website [10, 11].

6. CONCLUSIONS

There is the need for an international software guide for

metrologists, measurement scientists and practitioners which
contains all that is required to develop fit-for-purpose
software as currently none exists.

The concept of the international software guide is being
jointly developed by PTB and NPL. It takes a risk-based
approach. Further details of the concept are still being
developed.

Currently, an ad hoc group on measurement software has
been set up under the JCGM (Joint Committee for Guides in
Metrology) to develop an international software guide for
the measurement community.

REFERENCES

[1] N. Greif, G. Parkin, “A new guide for the development and
assessment of measurement Software”, Advanced
Mathematical and Computational Tools in Metrology and
Testing (VIII), Paris, France, 23-25, June 2008.

[2] N. Greif, “Software testing and preventive quality assurance
for metrology”, Computer, Standards & Interfaces,
28(2006)3, pp. 286-296, Elsevier, March 2006.

[3] R. M. Barker, B. Wichmann, G. Parkin, SSfM Best Practice
Guide No 1, “Validation of software in measurement
systems”, DEM-ES 014, National Physical Laboratory,
January 2007.

[4] RTI, “The economic impacts of inadequate infrastructure for
software testing”, National Institute of Standards and
Technology, 2002.

[5] ISO, ISO/IEC 12207:2008, Systems and Software
Engineering - Software Lifecycle Processes, 2008.

[6] IEC, IEC 61508:1998, Functional safety of safety-related
systems, parts 1-7, 1998.

[7] ISO, ISO/IEC 15504-4:2004, Information Technology -
Process Assessment, part 4: Guidance on use for process
improvement and process capability determination, 2004.

[8] ISO, ISO/IEC 27005:2008, Information Technology -
Security Techniques - Information security risk
management, 2008.

[9] ISO, ISO/IEC 25000:2005, Software Engineering - Software
product Quality Requirements and Evaluation (SQuaRE) -
Guide to SQuaRE, 2005.

[10] Joint Committee for Guides in Metrology (JCGM),
http://www.bipm.org/en/committees/jc/jcgm/.

[11] JCGM ad hoc group on measurement software,
http://www.bipm.org/en/committees/jc/jcgm/adhoc_ms.html.

	PagNum2440: 2440
	ISBN2440: ISBN 978-963-88410-0-1 © 2009 IMEKO
	PagNum2441: 2441
	PagNum2442: 2442
	PagNum2443: 2443

