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Abstract − The scope here is to derive a model of the 

measurement error of static energy meters. The model 
proposed is based on three error parameters: gain, phase and 
bias error. The validity of the model is confirmed through 
the statistical analysis of the measurement results obtained 
during the calibration of a commercial energy meter, 
compliant with the Measuring Instruments Directive 
2004/22/EC. The experiments also involved operating 
conditions of the meter beyond those required by the 
calibration procedure prescribed by the relevant standards. A 
further analysis is offered aimed at verifying the statistical 
significance of the parameters of the model. 

Keywords: energy meters, measurement accuracy, 
Measuring Instruments Directive. 

1.  INTRODUCTION 

The come into effect of the Measuring Instruments 
Directive (MID) 2004/22/EC and the corresponding 
harmonized technical standards promotes the investigation 
of appropriate test and calibration procedures capable to 
assess the compliance of the measuring instruments for legal 
metrological control with the needs of the modern life. It is 
in this context that we focus our attention on the active 
(static) electrical energy meters ([1], annex MI-003) and in 
particular on their accuracy performance. 

The availability of a relatively simple model capable to 
predict the measurement error of an instrument as a function 
of its input quantities is essential for the design of the 
calibration plan and for the identification of possible critical 
aspects of the metrological confirmation process. It is indeed 
important to be aware that the adoption of different 
calibration plans might lead to different conclusions about 
the compliance of the same instrument with the error limits 
stated by the relevant standards. 

Although the model proposed relies on basic physical 
considerations about the typical architecture of static energy 
meters the scope here is not to identify the various sources 
of error and/or to quantify them starting from an a-priori 
analysis of the physical structure of these devices (as 
described, for example, in [2]-[7]). The identification of 
each source of error is a difficult task, especially considering 
that different non-ideal effects may lead to the same error 
contribution. We will therefore follow a quasi-black box and 

empirical approach leading to a simple model having few 
(three) parameters which will be quantified making use of 
the statistical analysis of series of measurements. 

Gain (multiplicative), phase and bias (additive) errors are 
considered. Gain and phase errors are associated to the gain 
and phase mismatch of the voltage and current channels of 
the energy meter, while the bias error is associated to a bias 
in both channels. Although measures are taken, in the 
energy meter architecture, in order to correct these errors the 
correction itself cannot be perfect and a residual error will 
unavoidably be present. All the parameters are assumed to 
be independent of load current. The plausibility of an 
additional contribution to gain error proportional to load 
current (originated from self-heating) is however tested 
through an appropriate statistical analysis. 

In the following we will refer to power meters (PMs) 
instead of energy meters because the principle of operation 
of these instruments is that of a PM and the conversion from 
power to energy is obtained through a count operation, 
which is intrinsically error free. 

2.  ERROR MODEL 

The error model of the PM is sketched in Fig. 1. It 
consists of three error contributions, namely the gain error 
α , the phase error cϕ  and the bias error ε . The active 
power P  delivered to the input of the PM is 
 
 cosP VI ϕ=  (1) 
 
(the meaning of the symbols is obvious).The reading of the 
PM, mP , is 
 
 ( )(1 ) cosmP VI cα ϕ ϕ ε= + + +  (2) 
 
In absence of any error contribution, that is when 0α = , 

0cϕ = , 0ε =  we have mP P= . 
The error model, as expressed by (2) is non-linear. 

However, as it is verified in practice, errors are small and (2) 
can be linearized around the ideal zero error condition, that 
is 
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where the partial derivatives in (3) are evaluated in 0α = , 

0cϕ = , 0ε = . If the errors and derivatives are known 
equation (3) can be used to correct the measured power mP  
in order to predict the power VI cosϕ  actually delivered to 
the input of the PM. Thus the term VI cosϕ  in (3) 
corresponds to the power predicted by the model, pP , and 
we have 
 

 m m m
p m c
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P P P
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After simple calculations we obtain 
 

 cosmP
VI

δ
ϕ

δα
=  (5) 

 sinm

c

P
VI

δ
ϕ

δϕ
= −  (6) 

 1mPδ
δε

=  (7) 

 
Note that the sensitivity to the gain and phase errors is large 
when the apparent power VI  is large. Also, the sensitivity 
to gain error is higher for higher values of the power factor 
while the reverse is true for phase error. The sensitivity to 
bias error does not depend on the load. The bias contribution 
dominates the PM error when the apparent power is low. 
 

 
Fig. 1. Schematic diagram showing the various error 
contributions and their effect on the power measured by the 
PM. 
 
 

3.  ERRORS ESTIMATION 
 

The errors are here evaluated through the least-squares 
statistical estimation method. The deviation  between 

the power predicted by the model 
,i jΔ

( )
,p i j

P  (see (4)), and the 

power ,i jP  delivered to the PM by a reference source is 
calculated for various values  of the load current 
(

iI
1,2,...i N= ) and of the power factor ( )cos

j
ϕ  

( 1,2,...j M= ). We have 
 
 ( ), ,i j p i ji j

P PΔ = − ,  (8) 

 
The values of the errors α , cϕ  and ε  are those minimizing 
the relative sum-of-the-squares  given by SS
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The preference for the relative rather than the absolute 
deviation is based on the fact that the inaccuracy of the 
reference source is typically proportional to VI , the 
constant of proportionality being nearly independent of load 
current, voltage and power factor. 
 

4.  EXPERIMENTAL RESULTS 
 

The model was tested against measurements performed 
on two commercial PMs. Similar results were obtained, 
leading to the same favourable conclusion about the validity 
of the model. Here we limit our attention to the set of results 
corresponding to one of the two PMs calibrated. The 
measurement plan was designed according to [1]. In 
particular load current ranged from 500 mA to 32 A and 
power factor was set to 1, 0.5 inductive and 0.8 capacitive. 
The investigation included additional power factors, namely 
0.1 and 0.3 inductive and 0.1 and 0.3 capacitive, in order to 
verify the validity of the model outside the limits set by the 
standard calibration procedure. The voltage was set to 230 
V. The number of combinations of load currents and power 
factors was therefore 112 (  current values times 16N =

7M =  power factor values) and for each combination 5 
readings of the PM were taken totally collecting 560 
measurements. The mean value of the five readings 
corresponding to each current-power factor combination, 
( ) ,m i j
P , was calculated together with the standard deviation 

of the mean ( ) ,m i ju . The power delivered to the input of the 

power meter, ,i jP , was generated by a reference source (a 
commercial calibrator) capable to independently adjust 
voltage, current and phase angle through a wide range of 
values. The inaccuracy of the reference generator is 
quantified by an expanded uncertainty U , stated at the 95 
% confidence level. The deviation 

,i j

,i jδ  between the PM 
reading and the reference power was calculated as 

Gain error 
α  

Phase error 
cϕ  

Bias error 
ε  

cosP VI ϕ=  

( )(1 ) cosm cP VIα ϕ ϕ ε= + + +

(1 ) cosVIα ϕ+  

( )(1 ) cos cVIα ϕ ϕ+ +  

 
 ( ), ,i j m i ji jP Pδ = − ,  (10) 

 
and its expanded uncertainty, or calibration uncertainty 
( ) ,i jUδ , is 



 

 ( ) ( )
2

2
,, i j mi j i j

U U Uδ ,
⎡ ⎤= + ⎣ ⎦  (11) 

 
where  is the expanded uncertainty due 

to the non-repeatability of the PM and corresponding to 95 
% confidence level (2.78 is the critical value of the 
Student’s t distribution with four degrees of freedom and 
corresponding to 95 % confidence interval). 

( ) ( ),
2.78m i j i j

U =
,mu

The error parameters α , cϕ  and ε  appearing in the 
error model (4) were computed according to the least-
squares estimation procedure described in section 3. Finally  
the deviation  between the power predicted by the 

model 
,i jΔ

( )
,p i j

P  and the reference power ,i jP  (see (8)) was 

calculated. The comparison between the relative residuals 
, /i j i j,Pδ  and , ,/i j i jPΔ  as a function of current is shown in 

figures 2(a) through 2(g). Each figure corresponds to a 
different value of the power factor (see the caption of Fig. 
2). The amplitude of the (symmetric) uncertainty bar around 

, /i j i j,Pδ  is . ( ) ( ), ,
2 /

i j i j
U Pδ
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(b) 
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(c) 
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(d) 
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(e) 
 

-4.0%

-3.0%

-2.0%

-1.0%

0.0%

1.0%

2.0%

3.0%

4.0%

0 5 10 15 20 25 30 35
Current [A]

E
rro

r [
%

]

 
(f) 

 

-5.0%

-4.0%

-3.0%

-2.0%

-1.0%

0.0%

1.0%

2.0%

3.0%

0 5 10 15 20 25 30 35
Current [A]

E
rro

r [
%

]

 
(g) 

 
Fig. 2.  Relative deviation between the measured power and the 
reference power (continuous line with triangles) compared to the 
corresponding deviation predicted by the model (continuous line 
with squares): (a) cos 1ϕ = , (b) cos 0.8ϕ =  capacitive, (c) 
cos 0.5ϕ =  inductive, (d) cos 0.3ϕ =  capacitive, (e) cos 0.3ϕ =  
inductive, (f) cos 0.1ϕ =  capacitive, (g) cos 0.1ϕ =  inductive. 
 

The relative calibration uncertainty is of the order of a 
few tenths of percent when the power factor is relatively 
high ( cos 1ϕ = , 0.8 capacitive, 0.5 inductive, i.e. the 
calibration values set in [8]) while reaches few percents 
when the power factor is low ( cos 0.1ϕ =  inductive and 
capacitive representing the worst cases). It is important to 



observe that the dominant contribution to the calibration 
uncertainty is due to the uncertainty of the calibrator, which 
ranges from 0.08 % ( cos 1ϕ = , load current less than 1 A) 
to 2.5 % ( cos 0.1ϕ = , inductive or capacitive, load-current 
greater than 10 A) while the non-repeatability of the PM 
ranges from 0.02 % to 0.2 %. 

The limit of maximum PM error, as specified in [8] is 
1.0 % or 1.5 % depending on the value of apparent power 
and power factor. The magnitude of the measured errors is 
lower than these limits (see Fig. 2(a), (b) and (c)). 

Note that the discrepancy between the error predicted by 
the model and the measured error is generally much lower 
than the calibration uncertainty. It is thus impossible to 
ascertain whether such discrepancy is due to model 
imperfections or it is intrinsic to measurement results. 
Anyway this demonstrates the ability of the model to predict 
the PM errors within the accuracy ordinarily achievable 
through these calibrations. Also, the good repeatability of 
the PM allows for a substantial reduction of calibration 
uncertainty by using a higher quality calibrator.  

5.  MODEL VALIDATION 

The model is here tested in order to verify the statistical 
significance of its parameters. The significance test is 
performed according to the analysis of variance technique 
[9]. In essence the technique consists in verifying if the 
introduction of an additional parameter into the model 
produces a substantial reduction of the discrepancy between 
measurements and predictions. The test-statistic is the Fisher 
variable F . The following possible cases are considered 
and listed below in order of increasing complexity of the 
model. 

 
Model I (two parameters: α  and ε ) 
 

 (1 ) cosI
mP VIα ϕ ε= + +  (12) 

 
Model IIa (three parameters: α , cϕ  and ε ) 

 
 ( )(1 ) cosIIa

mP VI cα ϕ ϕ ε= + + +  (13) 
 
Model IIb (three parameters: α , β  and ε ) 

 
 (1 ) cosIIb

mP I VIα β ϕ= + + +ε  (14) 
 
Model III (four parameters α , β , cϕ  and ε ) 

 
 ( )(1 ) cosIII

mP I VI cα β ϕ ϕ= + + + +ε  (15) 
 
The model adopted in the previous sections is model IIa, 
where the phase error ( cϕ ) is introduced in addition to the 
basic gain (α ) and bias (ε ) error parameters in Model I. A 
linear dependence of gain error on the load current is 
included in models IIb and III through the error parameter 
β . 

 
Table 1.  Analysis of variance: model IIa with respect to model I 

 

 No. of 
parameters 

Degrees 
of 

freedom 

Sum of 
squares of 
residuals 

Mean square 

Model I 2 110 55.38 10−⋅  74.89 10IM −= ⋅  

Model IIa 3 109 54.88 10−⋅  74.48 10IIaM −= ⋅  

Difference 1 1 64.96 10−⋅  64.96 10IIa IM −
− = ⋅

11.07 6.87IIa I
c

IIa

MF F
M

−= = > =  

 
Table 2.  Analysis of variance: model IIb with respect to model I 

 

 No. of 
parameters 

Degrees 
of 

freedom 

Sum of 
squares of 
residuals 

Mean square 

Model I 2 110 55.38 10−⋅  74.89 10IM −= ⋅  

Model IIb 3 109 55.14 10−⋅  74.71 10IIbM −= ⋅  

Difference 1 1 62.39 10−⋅  62.39 10IIb IM −
− = ⋅

5.07 6.87IIb I
c

IIb

MF F
M

−= = < =  

 
Table 2.  Analysis of variance: model III with respect to model IIa 

 

 No. of 
parameters 

Degrees 
of 

freedom 

Sum of 
squares of 
residuals 

Mean square 

Model IIa 3 109 54.88 10−⋅  74.48 10IIaM −= ⋅  

Model III 4 108 54.63 10−⋅  74.29 10IIIM −= ⋅  

Difference 1 1 62.51 10−⋅  62.51 10III IIaM −
− = ⋅

5.86 6.88III IIa
c

III

MF F
M

−= = < =  

 
The results of the analysis of variance are schematically 

reported in Tables 1, 2 and 3. The models to be compared 
appear in the first column (second and third rows), in order 
of increasing complexity. The number of parameters to be 
estimated is reported in the second column. In the third 
column we have the number of degrees of freedom, which 
corresponds to the difference between the total number of 
load current-power factor combinations ( ) and 
the number of parameters to be estimated. The sum of the 
square of residuals is in column four. Each residual 
corresponds to the relative difference between the prediction 
of the model and the mean indication of the reference 
generator. The mean square, see the fifth column, is the ratio 
between the sum of the square of residuals and the number 
of degrees of freedom. In the row named “Difference” we 
have the difference between the values in the two rows 
above, with the exception of the figure in the last column 
which corresponds to the ratio between the value in the 
fourth column and that in the third one. The effect of the 
introduction of a new parameter in the model is considered 
significant if the ratio between the mean square of residuals 
of the difference and that of the model with increased 
complexity is greater than 

112M N⋅ =

cF , where cF  is the critical value 



of the Fisher variable at the 1 % level of significance. 
The number of degrees of freedom of cF  are those of the 
difference at the numerator (always equal to 1 in our case) 
and those of the more complex model at the denominator. 

We see that the introduction of the phase error parameter 
cϕ  is significant (Table 1), while the additional parameter 
β  in the gain error does not appreciably reduce the sum of 
the square residuals (see Tables 2 and 3). The introduction 
of β  is not significant at the 1 % level and it is slightly 
significant at the 5 % level (where  or 

). 
3.93 5.07cF F′ = < =

5.86F =

6.  CONCLUSIONS AND FURTHER WORK 

The simple model here proposed is able to predict the 
measurement error of static energy meters to an accuracy of 
a few tenths of percent, that is well within the uncertainty 
limits required by the MID harmonised standards for the 
calibration of these devices. A reduction of calibration 
uncertainty is envisaged due to the good repeatability of the 
meters. Additional measurements will be performed in order 
to further test the validity of the model and the sufficiency 
of the parameters involved. 
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