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Abstract– Advanced control of Coriolis Mass Flow

Meters (CMFM) is crucial in situations with multiphase

flow and absolutely necessary to prevent the meter from

stalling [1]. A high dynamic response of the meter is also

of great importance in order to realize advanced features s.a.

parameter identification for self-diagnosis or detection of

changes in sensitivity and zero. In [4] a cyclic stimulation

of the coriolis-mode of the CMFM, representing a virtual

mass flow, is presented for generating diagnostic data and

marks a major step towards the realization of such features.

The presented phasor control scheme for phasors with quasi

stationary frequencies reduces the cycle time by a factor of

two with respect to [6] and allows to handle situations with

multiphase flow. The control performance is much better than

reported before but can still be enhanced if the scheme is

extended to time-varying frequencies.

In the paper only the drive-mode of the CMFM (single straight

pipe) is investigated. The control objective is to stimulate the

oscillation system in its a priori unknown eigenfrequency ω01

by phase control and to allow for phase and amplitude control

simultaneously. This is different to conventional control

schemes where phase- and amplitude control have to be

separated in time in order to work properly. The control

scheme is tested in simulation and realized in an experimental

setup of a CMFM.
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1 INTRODUCTION / STATEMENT OF THE

PROBLEM

According to the measurement principle, the accuracy of

todays CMFM is very high. In addition to mass flow, mea-

sured by the phase difference of two electromagnetic sensors

located at the up- and downstream part of the measuring pipe,

it is also possible to exploit the change in eigenfrequency of

the drive mode to measure fluid density. The principle element

of the CMFM is a single straight pipe (fig. 1) rigidly connected

to a supporting pipe. The oscillation of the pipe is stimulated

via two actuators situated symmetrically to the middle of the

pipe. Provided there is mass flow, the interaction of mass flow

and stimulated oscillation of the pipe in its 1st eigenmode will

induce Coriolis forces with opposite directions in the up- and

downstream part of the pipe and thus stimulate the CMFM in

its 2nd eigenmode. By addition and subtraction of the driving
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Figure 1: Equivalent mechanical oscillation system of the

CMFM

forces F
a

and F
b

together with the senor signals V
a

and V
b

we can derive a lumped parameter model of the CMFM [6] in

which both of the eigenmodes are separated with input vari-

ables U
1,2

and output variables Y1,2. In phasor notation we

get:
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The corresponding lumped parameter model and the block di-

agram of the CMFM are depicted in figs 1 and 2.

As the difference in phase between the phasors V
a

and V
b

is

proportional to mass flow, the phasors Y1 and Y2 have to be

orthogonal (fig. 3). Following [4] the control objectives that

have to be met by the block-diagram of the CMFM are:

• Orthogonality of the phasors Y1 and Y2 by amplitude con-

trol of the corresponding real- and imaginary parts.

• Stimulation of the 1st mode (drive mode i.e. transfer func-

tion G1(s)) in its eigenfrequency ω01 in order to enhance

the SNR.

• Fast dynamic response when stimulating the 2nd mode

(coriolis mode) with a virtual mass flow via Re{∆U2} in

order to gather diagnostic data.

To meet these control objectives in a first step only phase and

amplitude control of the 1st eigenmode is investigated in this

paper thus reducing the complexity of the problem substan-

tially without loss of generality. As the eigenfrequency of the

1st mode ω01 is a priori unknown, the stimulating frequency

has to be adjusted by phase control and the desired amplitude



of the output has to be controlled to a specified set point simul-

taneously. This is different to conventional control schemes

where phase- and amplitude control have to be separated in

time in order to work properly.
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Figure 2: Block-Diagram of the CMFM

2 CONTROL SCHEME FOR THE 1st EIGENMODE

To realise phasor control for the 1st eigenmode of the

CMFM represented by the transfer function

G1(s) =
Y1(s)

U∗
1
(s)
=

k1s

s2 + 2d1ω01s + ω2
01

(2)

the time signals have to be replaced by phasors. The phasor

representation for G1 has to allow for rapid changes in phasor

length and momentary frequency Φ̇.

In two phase flow with variable gas void fraction the eigen-

frequency of the CMD changes rapidly while the damping in-

creases by an order of about 2 to 3 in magnitude.

In practice the computation of phasors from time domain sig-

nals is rather difficult. A widely used procedure is the method

of quadrature demodulation where the time signal is multiplied

by sine and cosine. The resultant dc components form the real-

and imaginary part of the phasors. To get these dc compo-

nents, the resultant signals have to be low pass filtered with

high order filters that have proven inadequate for fast phase

and amplitude control as they limit the bandwidth of the con-

trol loop substantially. The problem can be solved by using an

extended Kalman Filter. Using a Kalman-Filter allows to gen-

erate the phasors without low pass filtering and thus provides

a powerful tool to estimate the phasors much faster than with

conventional quadrature demodulation.
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Figure 3: Scheme of the control system for the 1st eigenmode

The control objective for the 1st mode (fig. 3) can be summa-

rized as follow:

• Simultaneous amplitude and phase control

• Stimulation of the CMFM in its 1st eigenmode

• Fast disturbance rejection and set point control to allow

for cyclic operation

• Estimation of unknown parameters s.a. ω01, d1 and k1

3 AMPLITUDE CONTROL

In steady state the control input and the controlled out-

put are harmonic time signals, often represented by phasors

with constant amplitude and constant rotating frequency Φ̇. If

we extend this representation to time varying amplitude and

frequency similar to applications in power electronics, where

varying phasor amplitude with quasi stationary frequency is an

established tool, we get

x1(t) = Im{(X1R + j X1I) e jΦ(t)}

ẋ1(t) = Im{(Ẋ1R − Φ̇X1I) e jΦ(t) + j(Ẋ1I + Φ̇X1R) e jΦ(t)}

(3)

ẍ1(t) = Im{(Ẍ1R − Φ̈X1I − 2Φ̇Ẋ1I − Φ̇
2X1R) e jΦ(t)

+ j(Ẍ1I − Φ̈X1R − 2Φ̇Ẋ1R − Φ̇
2X1I) e jΦ(t)} .

The differential equation for the oscillation of the

1st eigenmode

ẍ1(t) + 2d1ω01 ẋ1(t) + ω2
01x1(t) = k1u∗1(t)

(4)
y = ẋ1(t)

now reads
[

Ẍ1R

Ẍ1I

]

︸   ︷︷   ︸

Ẍ1

+

[

2d1ω01 −2Φ̇

2Φ̇ 2d1ω01

]

︸                     ︷︷                     ︸

A1

[

Ẋ1R

Ẋ1I

]

︸   ︷︷   ︸

Ẋ1

+

[

ω2
01
− Φ̇2 −(Φ̈ + 2d1ω01Φ̇)

Φ̈ + 2d1ω01Φ̇ ω2
01
− Φ̇2

]

︸                                           ︷︷                                           ︸

A0

[

X1R

X1I

]

︸   ︷︷   ︸

X1

= k1

[

U∗
1R

U∗
1I

]

︸   ︷︷   ︸

U∗
1

(5)

with input

u∗1(t) = Im{(U∗1R + j U∗1I) e jΦ(t)} . (6)

Defining a reference model

Ẍ1 + A∗1Ẋ1 + A∗0X1 = k∗1U
1M

with U
1M
=

[

U1MR

U1MI

]

(7)

a reference model can be assigned to the system by the lin-

earizing control

U∗
1
=

1

k1

{k∗1U
1M
+ (A1 − A∗1)Ẋ1 + (A0 − A∗0)X1} (8)

As the matrices A0 and A1 depend on Φ̇ and Φ̈, the control

law is time variant. To account for model uncertainties and

to guarantee unbiased control, an LQ-controller for U
1M

with

integral action (see fig. 4) is used.
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Figure 4: Schematic of amplitude control

4 PHASE CONTROL

As the damping d1 ≈ 10−5 of the oscillation in

1st eigenmode is very low, the CMFM has to be operated in

its eigenfrequency ω01 to maximize SNR. This is done if the

input U∗
1

and the output Y1 of the transfer function

G1(s) =
k1s

s2 + 2d1ω01s + ω2
01

=
Y1(s)

U∗
1
(s)

(9)

are in phase (see fig. 5), resulting in

tan γ =
Y1I

Y1R

=
U∗

1I

U∗
1R

(10)

or

U∗1IY1R − U∗1RY1I = 0 (11)

For Φ̇ , ω01 and during transients, eq. (11) will not hold, as

the phase γ is only defined for stationary signals U∗
1

and Y1.

For that reason, an auxiliary measure ε(t) of phase, derived

from normalized phasors Y1n
and U∗

1n

ε(t) = U∗1RnY1In − U∗1InY1Rn (12)

is defined, resulting in

−1 ≤ ε(t) ≤ 1 . (13)

Using simple integral control action

Φ̈(t) = Ki · ε(t) (14)

the instantaneous frequency Φ̇ can be adjusted until ε(t) – the

error in phase – has vanished.

5 EXTENDED KALMAN-FILTER

The control scheme, as pointed out in figs 3 and 4, can only

be realized, if the real- and imaginary parts and the related time

derivatives of the phasors together with the a priori unknown

parameters X2d1ω01
= 2 d1 ω01 and Xω2

01
= ω2

01
can directly be

estimated from the time signal

y1(t) = ẋ1(t) = Im{(Ẋ1R − Φ̇X1I + j(Ẋ1I + Φ̇X1R)) e jΦ(t)} (15)
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Ŷ

amplitude control

W1

1
ŷ
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Figure 6: Model-based phasor control for the 1st eigenmode

From eq. (5) we derive




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Ẋ1I

Ẍ1R
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Ẋω2
01

Ẋ2d1ω01


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=
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0 0

0 0

Φ̇2 − Xω2
01

Φ̈ + X2d1ω01
Φ̇
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Φ̇) Φ̇2 − Xω2

01

0 0

0 0

. . .
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1 0 0 0

0 1 0 0

−X2d1ω01
2Φ̇ 0 0

−2Φ̇ −X2d1ω01
0 0

0 0 0 0

0 0 0 0






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X1R
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Xω2
01
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X

+


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0 0

0 0

k1 0

0 k1

0 0

0 0





[

U∗
1R

U∗
1I

]

(16)

and the measurement equation reads

y1(t) =
[

Φ̇ cosΦ −Φ̇ sinΦ sinΦ cosΦ 0 0
]

X (17)

The detailed control scheme is given in fig. 6.

6 SIMULATION RESULTS

(time varying excitation frequency)

The performance of phasor control has been tested us-

ing a 2nd order system (eq. (5)) with nominal parameters

ω01 = 2 rad/sec, d1 = 0, 1 and k1 = 1. In fig. 7 the response

of the output y1(t) to a step change in amplitude of w1(t) is

shown. The step change in amplitude is translated into a step

change of the corresponding real part of the phasor Y1. As

can be seen, the settling time is reached after about one period

of oscillation while during transients the input u∗
1
(t) is not a

harmonic oscillation any more. The same applies for the mo-

mentary frequency Φ̇ of the input which also varies during the

control process.



Simulation results based on a model for time varying excitation frequency
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Figure 7: Response of y1(t) to a step change of the refer-

ence w1(t)
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Practical results based on a model for quasi stationary excitation frequency
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As often encountered in practical situations, the eigenfre-

quency of the 1st mode will change due to a change in fluid

density. Fig. 8 shows the reaction of the control loop if a sim-

ulated step change in eigenfrequency ω01 of ca. 20% is in-

duced. This change in eigenfrequency will occur, if in a batch

experiment the CMFM will drain from full to empty and will

be refilled again. As the control objective is to operate the

CMFM in its 1st eigenmode with ω01 ∼
√

1/density, the fre-

quency of stimulation first increases until the eigenfrequency

ω01 is reached and decreases again after the batching exper-

iment has come to an end. During transients, the controlled

output y1(t) and the corresponding real- and imaginary part of

the phasor Y1 will exhibit only minor changes in amplitude,

while the control input u∗
1
(t) is reacting to the error in phase.

After about two periods of oscillation, steady state is reached

again.

7 PRACTICAL RESULTS

(quasi stationary excitation frequency)

In figs 9 and 10 the dynamics of the control for slowly vary-

ing stimulation frequencies is shown. In contrast to the pre-

vious simulation study, the momentary frequency is regarded

as being quasi stationary. But instead of controlling only the

1st mode of the CMFM, both of the eigenmodes are controlled

in order to orthogonalize the phasors Y1 and Y2.

Fig. 9 shows pure amplitude control of the 1st mode – for bet-

ter comparison with fig. 7 the corresponding real and imagi-

nary parts of the phasor representing the 2nd eigenmode are not

shown. As can be seen, there are only minor changes in phase

and momentary frequency Φ̇ during settling time. Fig. 10 re-

ports a batch experiment where the measuring pipe is filled up

with pure air at the beginning of the experiment. The eigenfre-

quency is ω01 ≈ 2040 rad/s. When the measuring pipe is being

filled up, the eigenfrequency ω01 decreases and the stimulating

frequency Φ̇ is adjusted by frequency control to the eigenfre-

quency ω01 in order to compensate the phase error ε(t). To-

gether with changes in eigenfrequency, the damping is also

increasing and causes a decrease in the amplitude of the real-

and imaginary part of the phasor Y1. Accordingly, by con-

trol action, the real- and imaginary part of the control input

increases from nearly zero to an upper limit that will not dam-

age the CMFM. As can be seen, the amplitude of Y1 exhibits

a short break down, because the restrictions on amplitude for

the control inputs U1R and U1I are temporarily violated.

8 SUMMARY / FUTURE WORK

In this paper a phasor control scheme for a 2nd order os-
cillation system with sinusoidal stimulation and time varying
frequency of stimulation is presented and tested in simulation.
The real- and imaginary parts of the phasors are estimated to-
gether with additional parameters s.a. damping and eigenfre-
quency by an extended Kalman-Filter. The linearizing control
allows for rapid frequency and amplitude control. The exten-
sion of the existing phasor control scheme for quasi station-
ary frequencies of excitation to time varying frequencies for
both of the outputs Y1 and Y2 of the CMFM is under work.
It is hoped that the practical result gained so far with quasi
stationary frequency of excitation and reported in this paper

can still be outperformed by using a mathematical formulation
with time varying frequencies as demonstrated in simulation.
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